The Chromatic Number of Random Graphs for Most Average Degrees
暂无分享,去创建一个
[1] Martin E. Dyer,et al. On the chromatic number of a random hypergraph , 2015, J. Comb. Theory, Ser. B.
[2] Cristopher Moore,et al. Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold , 2003, SIAM J. Comput..
[3] Cristopher Moore,et al. The Chromatic Number of Random Regular Graphs , 2004, APPROX-RANDOM.
[4] Florent Krzakala,et al. Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] Florent Krzakala,et al. Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] Benny Sudakov,et al. Coloring Random Graphs , 1998, Inf. Process. Lett..
[7] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[8] Cristopher Moore,et al. Tight Bounds on the Threshold for Permuted k-Colorability , 2011, APPROX-RANDOM.
[9] Amin Coja-Oghlan,et al. Upper-Bounding the k-Colorability Threshold by Counting Covers , 2013, Electron. J. Comb..
[10] Béla Bollobás,et al. The chromatic number of random graphs , 1988, Comb..
[11] Robin Thomas,et al. The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.
[12] Béla Bollobás,et al. Random Graphs , 1985 .
[13] Joel H. Spencer,et al. Sharp concentration of the chromatic number on random graphsGn, p , 1987, Comb..
[14] Michael Molloy,et al. The analysis of a list-coloring algorithm on a random graph , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[15] Michael Krivelevich,et al. Coloring Random Graphs — an Algorithmic Perspective , 2002 .
[16] Konstantinos Panagiotou,et al. Catching the k-NAESAT threshold , 2011, STOC '12.
[17] Noga Alon,et al. The concentration of the chromatic number of random graphs , 1997, Comb..
[18] D. Achlioptas,et al. A sharp threshold for k-colorability , 1999 .
[19] T. Toffoli. Physics and computation , 1982 .
[20] Lenka Zdeborová,et al. The condensation transition in random hypergraph 2-coloring , 2011, SODA.
[21] G. Grimmett,et al. On colouring random graphs , 1975 .
[22] Amin Coja-Oghlan,et al. On the chromatic number of random regular graphs , 2016, J. Comb. Theory, Ser. B.
[23] M. Mézard,et al. Information, Physics, and Computation , 2009 .
[24] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[25] Béla Bollobás,et al. Random Graphs: Notation , 2001 .
[26] D. Saad,et al. Random graph coloring: statistical physics approach. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[27] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[28] Colin McDiarmid,et al. Algorithmic theory of random graphs , 1997 .
[29] Tomasz Luczak. A note on the sharp concentration of the chromatic number of random graphs , 1991, Comb..
[30] Svante Janson,et al. Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.
[31] Tomasz Luczak. The chromatic number of random graphs , 1991, Comb..
[32] D. W. MATULA. Expose-and-merge exploration and the chromatic number of a random graph , 1987, Comb..
[33] Amin Coja-Oghlan,et al. Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[34] Béla Bollobás,et al. The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.
[35] A. Naor,et al. The two possible values of the chromatic number of a random graph , 2005 .
[36] Andrea Montanari,et al. Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.
[37] N. Wormald,et al. On the chromatic number of random d-regular graphs , 2008, 0812.2937.
[38] Alan M. Frieze,et al. Random k-Sat: A Tight Threshold For Moderately Growing k , 2005, Comb..
[39] V. Bapst,et al. The Condensation Phase Transition in Random Graph Coloring , 2016 .
[40] Riccardo Zecchina,et al. Coloring random graphs , 2002, Physical review letters.
[41] M. Mézard,et al. Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.
[42] Noga Alon,et al. A Spectral Technique for Coloring Random 3-Colorable Graphs , 1997, SIAM J. Comput..
[43] P. Erdos,et al. On the evolution of random graphs , 1984 .
[44] Konstantinos Panagiotou,et al. Going after the k-SAT threshold , 2013, STOC '13.