Nanowatt-Level Wakeup Receiver Front Ends Using MEMS Resonators for Impedance Transformation

This paper presents the first demonstration of nanowatt-level CMOS wakeup receiver (WuRx) front ends (FEs) that utilize microelectromechanical system (MEMS)-based matching networks (MNs). The first FE uses a fully MEMS-based MN (MMN) that operates at 88.8 MHz. It consists of a large array of lithium niobate resonators that are fabricated on the same die. Measurements of the integrated WuRx FE with the MMN indicate that its loaded voltage gain achieves a bandwidth of 0.78 MHz with a quality factor of 114. The second FE uses a hybrid MN (HMN) that operates at 457 MHz. It consists of an aluminum nitride laterally vibrating resonator as well as eight discrete inductors and capacitors surrounding the MEMS device. Measurements of the integrated WuRx FE with the HMN indicate that it achieves a sensitivity of −54 dBm with 7 nW of average dc power consumption without a digital correlator.

[1]  Gabriel M. Rebeiz,et al.  A 400 MHz 4.5 nW −63.8 dBm sensitivity wake-up receiver employing an active pseudo-balun envelope detector , 2017, ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference.

[2]  Guofeng Chen,et al.  RF Passive Components Based on Aluminum Nitride Cross-Sectional Lamé-Mode MEMS Resonators , 2017, IEEE Transactions on Electron Devices.

[3]  David D. Wentzloff,et al.  A 116nW multi-band wake-up receiver with 31-bit correlator and interference rejection , 2013, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

[4]  Behzad Razavi,et al.  The StrongARM Latch [A Circuit for All Seasons] , 2015, IEEE Solid-State Circuits Magazine.

[5]  J. F. Dickson,et al.  On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique , 1976 .

[7]  Sneha A. Dalvi,et al.  Internet of Things for Smart Cities , 2017 .

[8]  J. D. Larson,et al.  Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[9]  Steven M. Bowers,et al.  Event-driven wakeup receivers: Applications and design challenges , 2017, 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS).

[10]  G. Piazza,et al.  X-Cut Lithium Niobate Laterally Vibrating MEMS Resonator With Figure of Merit of 1560 , 2018, Journal of Microelectromechanical Systems.

[11]  Heinrich Milosiu,et al.  A 3-µW 868-MHz wake-up receiver with −83 dBm sensitivity and scalable data rate , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[12]  J. Hesler,et al.  NEP and responsivity of THz zero-bias Schottky diode detectors , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[13]  Christal Gordon,et al.  Event driven persistent sensing: Overcoming the energy and lifetime limitations in unattended wireless sensors , 2016, 2016 IEEE SENSORS.

[14]  Ryan Cable,et al.  Boosting MEMS Piezoelectric Transformer Figures of Merit via Architecture Optimization , 2018, IEEE Electron Device Letters.

[15]  Abhishek Roy,et al.  An 8.3 nW −72 dBm event driven IoE wake up receiver RF front end , 2017, 2017 12th European Microwave Integrated Circuits Conference (EuMIC).

[16]  Sarah S. Bedair,et al.  Thin-Film Piezoelectric-on-Silicon Resonant Transformers , 2013, Journal of Microelectromechanical Systems.

[17]  Benton H. Calhoun,et al.  A −76dBm 7.4nW wakeup radio with automatic offset compensation , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[18]  Steven M. Bowers,et al.  Analysis of quadratic dickson based envelope detectors for IoE sensor node applications , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[19]  T. Manzaneque,et al.  Exploiting parallelism in resonators for large voltage gain in low power wake up radio front ends , 2018, 2018 IEEE Micro Electro Mechanical Systems (MEMS).

[20]  Nano-gap vapor sensor , 2017, 2017 IEEE SENSORS.

[21]  Songbin Gong,et al.  Arraying SH0 Lithium Niobate laterally vibrating resonators for mitigation of higher order spurious modes , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[22]  Benton H. Calhoun,et al.  A passive 461 MHz AlN-CMOS RF front-end for event-driven wakeup receivers , 2017, 2017 IEEE SENSORS.

[23]  G. Piazza,et al.  Anchor Losses in AlN Contour Mode Resonators , 2015, Journal of Microelectromechanical Systems.

[24]  N. McGruer,et al.  MEMS-based near-zero power infrared wireless sensor node , 2018, 2018 IEEE Micro Electro Mechanical Systems (MEMS).

[25]  Benton H. Calhoun,et al.  Nanowatt Level Wake-Up Receivers Using Co-Designed CMOS-MEMS Technologies , 2018 .

[26]  Andrea Zanella,et al.  Internet of Things for Smart Cities , 2014, IEEE Internet of Things Journal.

[27]  Gianluca Piazza,et al.  Figure-of-Merit Enhancement for Laterally Vibrating Lithium Niobate MEMS Resonators , 2013, IEEE Transactions on Electron Devices.

[28]  Tomás Manzaneque,et al.  A high FoM lithium niobate resonant transformer for passive voltage amplification , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[29]  Tomas Manzaneque,et al.  Piezoelectric RF resonant voltage amplifiers for IoT applications , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[30]  Suhwan Kim,et al.  A cm-scale self-powered intelligent and secure IoT edge mote featuring an ultra-low-power SoC in 14nm tri-gate CMOS , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[31]  Benton H. Calhoun,et al.  Body Area Sensor Networks: Challenges and Opportunities , 2009, Computer.

[32]  Janet Nguyen,et al.  A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication , 2014 .

[33]  David Blaauw,et al.  A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes , 2016, IEEE Journal of Solid-State Circuits.

[34]  Seunghyun Oh,et al.  A −32dBm sensitivity RF power harvester in 130nm CMOS , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[35]  Jan M. Rabaey,et al.  A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[36]  Anming Gao,et al.  Harnessing Mode Conversion for Spurious Mode Suppression in AlN Laterally Vibrating Resonators , 2016, Journal of Microelectromechanical Systems.

[37]  Sean Yen,et al.  Near-zero power accelerometer wakeup system , 2017, 2017 IEEE SENSORS.

[38]  Gabriel M. Rebeiz,et al.  A Near-Zero-Power Wake-Up Receiver Achieving −69-dBm Sensitivity , 2018, IEEE Journal of Solid-State Circuits.

[39]  Henry Ott,et al.  Electromagnetic Compatibility Engineering , 2009 .

[40]  Songbin Gong,et al.  Design and Analysis of Lithium–Niobate-Based High Electromechanical Coupling RF-MEMS Resonators for Wideband Filtering , 2013, IEEE Transactions on Microwave Theory and Techniques.

[41]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[42]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[43]  Vidal-Alvarez Gabriel,et al.  Laterally vibrating lithium niobate MEMS resonators with 30% electromechanical coupling coefficient , 2017 .