Variance estimation of modal parameters from output-only and input/output subspace-based system identification

An important step in the operational modal analysis of a structure is to infer on its dynamic behavior through its modal parameters. They can be estimated by various modal identification algorithms that fit a theoretical model to measured data. When output-only data is available, i.e. measured responses of the structure, frequencies, damping ratios and mode shapes can be identified assuming that ambient sources like wind or traffic excite the system sufficiently. When also input data is available, i.e. signals used to excite the structure, input/output identification algorithms are used. The use of input information usually provides better modal estimates in a desired frequency range. While the identification of the modal mass is not considered in this paper, we focus on the estimation of the frequencies, damping ratios and mode shapes, relevant for example for modal analysis during in-flight monitoring of aircrafts. When identifying the modal parameters from noisy measurement data, the information on their uncertainty is most relevant. In this paper, new variance computation schemes for modal parameters are developed for four subspace algorithms, including output-only and input/output methods, as well as data-driven and covariance-driven methods. For the input/output methods, the known inputs are considered as realizations of a stochastic process. Based on Monte Carlo validations, the quality of identification, accuracy of variance estimations and sensor noise robustness are discussed. Finally these algorithms are applied on real measured data obtained during vibrations tests of an aircraft.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  Laurent Mevel,et al.  Subspace-based fault detection robust to changes in the noise covariances , 2013, Autom..

[3]  A. Benveniste,et al.  Input/output versus output-only data processing for structural identification—Application to in-flight data analysis , 2006 .

[4]  Laurent Mevel,et al.  Modular Subspace-Based System Identification From Multi-Setup Measurements , 2012, IEEE Transactions on Automatic Control.

[5]  S. Huffel,et al.  A fast algorithm for subspace state-space system identification via exploitation of the displacement structure , 2001 .

[6]  Dietmar Bauer,et al.  Asymptotic properties of subspace estimators , 2005, Autom..

[7]  Laurent Mevel,et al.  Efficient Multi-Order Uncertainty Computation for Stochastic Subspace Identification , 2013 .

[8]  Dietmar Bauer,et al.  Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs , 1999, Autom..

[9]  Laurent Mevel,et al.  Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements ☆ , 2013 .

[10]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[11]  Stefano Marchesiello,et al.  Identification of a Duffing oscillator under different types of excitation , 2010 .

[12]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[13]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[14]  Rik Pintelon,et al.  Uncertainty bounds on modal parameters obtained from stochastic subspace identification , 2008 .

[15]  A. Benveniste,et al.  MERGING SENSOR DATA FROM MULTIPLE MEASUREMENT SET-UPS FOR NON-STATIONARY SUBSPACE-BASED MODAL ANALYSIS , 2002 .

[16]  L. Mevel,et al.  Fast multi-order computation of system matrices in subspace-based system identification ☆ , 2012 .

[17]  Guido De Roeck,et al.  REFERENCE-BASED STOCHASTIC SUBSPACE IDENTIFICATION FOR OUTPUT-ONLY MODAL ANALYSIS , 1999 .

[18]  Rik Pintelon,et al.  Uncertainty calculation in (operational) modal analysis , 2007 .

[19]  Guido De Roeck,et al.  Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis , 2006 .

[20]  Bo Wahlberg,et al.  A linear regression approach to state-space subspace system identification , 1996, Signal Process..

[21]  A. Benveniste,et al.  Single sample modal identification of a nonstationary stochastic process , 1985, IEEE Transactions on Automatic Control.

[22]  Camille Gontier,et al.  Statistical asymptotic error on modal parameters in combined deterministic-stochastic identification algorithm , 2005 .

[23]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[24]  Bo Wahlberg,et al.  Analysis of state space system identification methods based on instrumental variables and subspace fitting , 1997, Autom..

[25]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[26]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[27]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[28]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[29]  Laurent Mevel,et al.  Structural health monitoring with statistical methods during progressive damage test of S101 Bridge , 2014 .

[30]  E. J. Hannan,et al.  Multiple time series , 1970 .

[31]  W. Gersch On the achievable accuracy of structural system parameter estimates , 1974 .

[32]  A. Chiuso,et al.  The asymptotic variance of subspace estimates , 2004 .

[33]  Edwin Reynders,et al.  System Identification Methods for (Operational) Modal Analysis: Review and Comparison , 2012 .

[34]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[35]  Laurent Mevel,et al.  Input-Output Subspace-Based Fault Detection* , 2012 .

[36]  Gene H. Golub,et al.  Matrix computations , 1983 .

[37]  Luigi Garibaldi,et al.  Covariance-driven subspace identification: A complete input–output approach , 2013 .

[38]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[39]  Laurent Mevel,et al.  Nonstationary Consistency of Subspace Methods , 2007, IEEE Transactions on Automatic Control.

[40]  L. Mevel,et al.  Statistical model-based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios , 2004 .

[41]  Laurent Mevel,et al.  Multi-Order Covariance Computation for Estimates in Stochastic Subspace Identification Using QR Decompositions , 2014 .

[42]  Tony Gustafsson Subspace identification using instrumental variable techniques , 2001, Autom..

[43]  Michel Verhaegen,et al.  Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..