Ab initio phase estimation at the shot noise limit with on–off measurement

Phase resolution at the shot noise limit can be achieved with coherent states and on–off measurement. However, the estimation of an unknown phase using this scheme is still missing. Here, we experimentally demonstrate an ab initio phase estimation at the shot noise limit using on–off measurement and efficient Bayesian inference algorithm. The performance of the schemes with and without real-time feedback control is compared. The scheme with feedback control eliminates the ambiguity in the phase estimation and accelerates the convergence to true value. The shot noise limit that defines the ultimate precision is saturated independent of the true phase after about 150 rounds of measurement and feedback control. Our protocol may find important applications in practical precision metrology when only a limited number of measurements are allowed.

[1]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[2]  Jia Kong,et al.  Quantum metrology with parametric amplifier-based photon correlation interferometers , 2014, Nature Communications.

[3]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[4]  Matteo G. A. Paris,et al.  Bayesian estimation in homodyne interferometry , 2009, 0901.2585.

[5]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[6]  A Smerzi,et al.  Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. , 2007, Physical review letters.

[7]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[8]  Jing Liu,et al.  Control-enhanced multiparameter quantum estimation , 2017, 1710.06741.

[9]  Nathan Wiebe,et al.  Experimental Phase Estimation Enhanced By Machine Learning , 2017, Physical Review Applied.

[10]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[11]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[12]  B. Yurke,et al.  Squeezed-light-enhanced polarization interferometer. , 1987, Physical review letters.

[13]  Jihane Mimih,et al.  The parity operator in quantum optical metrology , 2010, 1007.0586.

[14]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[15]  Jonathan P. Dowling,et al.  Adaptive phase estimation with two-mode squeezed vacuum and parity measurement , 2016, 1609.04689.

[16]  L. Cohen,et al.  Super-resolved phase measurements at the shot noise limit by parity measurement. , 2014, Optics express.

[17]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[18]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[19]  Deterministic superresolution with coherent states at the shot noise limit. , 2012, Physical review letters.

[20]  Kimble,et al.  Precision measurement beyond the shot-noise limit. , 1987, Physical review letters.

[21]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[22]  Kaushik P. Seshadreesan,et al.  Phase estimation at the quantum Cramér-Rao bound via parity detection , 2013 .

[23]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[24]  Matthias D. Lang,et al.  Optimal quantum-enhanced interferometry , 2014, 1406.3274.

[25]  S. Paesani,et al.  Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.

[26]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[27]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[28]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[29]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[30]  Tobias Gehring,et al.  Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.

[31]  Barry C. Sanders,et al.  An efficient algorithm for optimizing adaptive quantum metrology processes , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[32]  Marcin Jarzyna,et al.  Quantum interferometry with and without an external phase reference , 2012 .

[33]  Tobias Gehring,et al.  Deterministic phase measurements exhibiting super-sensitivity and super-resolution , 2017, 1705.05609.

[34]  Brian J. Smith,et al.  Real-world quantum sensors: evaluating resources for precision measurement. , 2010, Physical review letters.

[35]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[36]  W. Bowen,et al.  Quantum-enhanced micromechanical displacement sensitivity. , 2013, Optics letters.

[37]  M. Takeoka,et al.  Optical phase estimation via the coherent state and displaced-photon counting , 2016, 1604.04319.

[38]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[39]  Shigeki Takeuchi,et al.  An entanglement-enhanced microscope , 2013, Nature Communications.

[40]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[41]  Gianfranco Cariolaro,et al.  Efficient optimal minimum error discrimination of symmetric quantum states , 2010 .

[42]  Jing Liu,et al.  Phase-matching condition for enhancement of phase sensitivity in quantum metrology , 2013, 1308.4799.

[43]  Z. Y. Ou,et al.  Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer , 2012 .

[44]  Klaus Mølmer,et al.  Fisher information and the quantum Cramér-Rao sensitivity limit of continuous measurements. , 2013, Physical review letters.

[45]  H M Wiseman,et al.  Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[46]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[47]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[48]  Roberta Ramponi,et al.  Measuring protein concentration with entangled photons , 2011, 1109.3128.

[49]  Haidong Yuan,et al.  Quantum parameter estimation with optimal control , 2016, 1604.04856.

[50]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.