THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr^(−1) for a GWB from supermassive black hole binaries of A_(gw) < 1.5 x 10^(-15). We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, Ω_(gw)(f)h^2 < 4.2 x 10^(-10). Our limit on the cosmic string GWB, Ω_(gw)(f)h^2 < 2.2 x 10^(-10), translates to a conservative limit on the cosmic string tension with Gµ < 3.3 x 10^(-8), a factor of four better than the joint Planck and high-l cosmic microwave background data from other experiments.

Yan Wang | Zaven Arzoumanian | Rutger van Haasteren | Kevin Stovall | Joseph Simon | Weiwei Zhu | Adam Brazier | Shami Chatterjee | Maura McLaughlin | Michele Vallisneri | Joseph Lazio | Sarah Burke-Spolaor | Scott Ransom | Xavier Siemens | Emmanuel Fonseca | Alberto Sesana | Neil Cornish | Sean McWilliams | D. Stinebring | J. Luo | S. McWilliams | X. Siemens | S. Chamberlin | N. Cornish | R. Lynch | L. Sampson | S. Burke-Spolaor | J. Cordes | Z. Arzoumanian | M. Mclaughlin | J. Swiggum | D. Lorimer | S. Ransom | A. Brazier | D. Nice | J. Ellis | F. Jenet | V. Kaspi | I. Stairs | K. Stovall | S. Chatterjee | T. Lazio | P. Demorest | M. Gonzalez | A. Sesana | M. Vallisneri | Y. Wang | M. Lam | B. Christy | C. Mingarelli | R. Haasteren | N. Palliyaguru | I. Stairs | T. Pennucci | L. Levin | R. Ferdman | S. Sanidas | E. Fonseca | M. Jones | A. Lommen | D. Madison | T. Dolch | N. Garver-Daniels | J. Simon | M. Koop | K. Crowter | Glenn Jones | Ryan Lynch | Ingrid Stairs | Dustin Madison | Chiara Mingarelli | Paul Demorest | Duncan Lorimer | Tim Pennucci | Dan Stinebring | Nipuni Palliyaguru | Stephen Taylor | Sydney Chamberlin | Brian Christy | Jim Cordes | Xihao Deng | Tim Dolch | Justin Ellis | Rob Ferdman | Nate Garver-Daniels | Fredrick Jenet | Vicky Kaspi | Michael Koop | Michael Lam | Lina Levin | Andrea Lommen | Jin Luo | David Nice | Laura Sampson | Sotiris Sanidas | Joseph Swiggum | X. Deng | J. Luo | S. Taylor | J. Cordes | Y. Wang | W. W. Zhu | G. Jones | R. V. Haasteren | G. Jones | S. Chatterjee | V. Kaspi | L. Levin | S. Taylor | W. Zhu | B. Christy | X. Deng | S. Chatterjee

[1]  S. McWilliams,et al.  Constraining the Solution to the Last Parsec Problem with Pulsar Timing , 2015, 1503.02662.

[2]  B. Hsieh,et al.  EVOLUTION OF THE MAJOR MERGER GALAXY PAIR FRACTION AT z < 1 , 2014, 1408.3468.

[3]  A. Sesana,et al.  Gas‐driven massive black hole binaries: signatures in the nHz gravitational wave background , 2010, 1002.0584.

[4]  Cosmic string production towards the end of brane inflation , 2002, hep-th/0204074.

[5]  Yen-Ting Lin,et al.  A NEW TEST OF THE STATISTICAL NATURE OF THE BRIGHTEST CLUSTER GALAXIES , 2009, 0904.3098.

[6]  A. V. D. Wel,et al.  An over-massive black hole in the compact lenticular galaxy NGC 1277 , 2012, Nature.

[7]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[8]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[9]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[10]  B. Stappers,et al.  Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array , 2012, 1201.2419.

[11]  Caltech,et al.  Long-Term Evolution of Massive Black Hole Binaries , 2002, astro-ph/0212459.

[12]  A. Sesana Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band , 2012, 1211.5375.

[13]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[14]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[15]  A. Jaffe,et al.  Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.

[16]  L. Price,et al.  Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.

[17]  J. Gair,et al.  Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.

[18]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[19]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[20]  E. Emsellem Is the black hole in NGC 1277 really overmassive , 2013, 1305.3630.

[21]  B. Stappers,et al.  PROJECTED CONSTRAINTS ON THE COSMIC (SUPER)STRING TENSION WITH FUTURE GRAVITATIONAL WAVE DETECTION EXPERIMENTS , 2012, 1211.5042.

[22]  J. Cordes,et al.  ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS , 2010, 1010.4794.

[23]  C. Mingarelli,et al.  Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays , 2014, 1408.6840.

[24]  E. Thrane,et al.  Sensitivity curves for searches for gravitational-wave backgrounds , 2013, 1310.5300.

[25]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[26]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[27]  J. Gair,et al.  Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays , 2013, 1306.5395.

[28]  Z. Haiman,et al.  THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.

[29]  Cosmic F- and D-strings , 2003, hep-th/0312067.

[30]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[31]  D. Stinebring Effects of the interstellar medium on detection of low-frequency gravitational waves , 2013, 1310.8316.

[32]  G. Hobbs,et al.  Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays , 2014, 1406.5297.

[33]  Black hole binary dynamics , 2002, astro-ph/0210116.

[34]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[35]  Y. Levin,et al.  Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution , 2013, Science.

[36]  L. Grishchuk GRAVITON CREATION IN THE EARLY UNIVERSE , 1977 .

[37]  Rainer Spurzem,et al.  BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.

[38]  M. Colpi Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence , 2014, 1407.3102.

[39]  A. Loeb,et al.  Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays , 2002, astro-ph/0211556.

[40]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[41]  Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16 , 2010, 1011.0718.

[42]  A. Sesana Insights into the astrophysics of supermassive black hole binaries from pulsar timing observations , 2013, 1307.2600.

[43]  E. Komatsu,et al.  Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model , 2006, astro-ph/0604176.

[44]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[45]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.

[46]  I. Mandel,et al.  Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.

[47]  M. Vallisneri,et al.  Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.

[48]  S. Burke-Spolaor,et al.  The sensitivity of the Parkes Pulsar Timing Array to individual sources of gravitational waves , 2010, 1005.1667.

[49]  J. Gair,et al.  European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.

[50]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[51]  M. Vallisneri,et al.  New advances in the Gaussian-process approach to pulsar-timing data analysis , 2014, 1407.1838.

[52]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[53]  S. McWilliams,et al.  GRAVITATIONAL WAVES AND STALLED SATELLITES FROM MASSIVE GALAXY MERGERS AT z ⩽ 1 , 2012, 1211.5377.

[54]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[55]  The production, spectrum and evolution of cosmic strings in brane inflation , 2003, hep-th/0303269.

[56]  M. Colpi,et al.  Supermassive black hole binaries in gaseous and stellar circumnuclear discs: orbital dynamics and gas accretion , 2006, astro-ph/0612505.

[57]  Zhao Wen Constraint on the early Universe by relic gravitational waves: From pulsar timing observations , 2011 .

[58]  S. Patil,et al.  The effective Planck mass and the scale of inflation , 2014, The European physical journal. C, Particles and fields.

[59]  J. Gair,et al.  Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays , 2014, 1406.4664.

[60]  Limits on the accretion rates onto massive black holes in nearby galaxies , 2000, astro-ph/0005516.

[61]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[62]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[63]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): galaxy close pairs, mergers and the future fate of stellar mass , 2014, 1408.1476.

[64]  A. Merloni,et al.  Linking the fate of massive black hole binaries to the active galactic nuclei luminosity function , 2015, 1502.03101.

[65]  L. Price,et al.  Time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches in pulsar timing data , 2014, 1410.8256.

[66]  K. Olum,et al.  Number of cosmic string loops , 2013, 1309.6637.

[67]  Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves , 2012, 1201.6641.

[68]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[69]  Bruce Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1999 .

[70]  D. Stinebring,et al.  GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2014 .

[71]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[72]  D. Champion,et al.  The European Pulsar Timing Array and the Large European Array for Pulsars , 2013 .

[73]  V. Mandic,et al.  Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.

[74]  R. N. Manchester,et al.  Tests of General Relativity from Timing the Double Pulsar , 2006, Science.

[75]  M. Hobson,et al.  Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.

[76]  Thibault Damour,et al.  Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows , 2005 .

[77]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[78]  Gerald D. Quinlan The dynamical evolution of massive black hole binaries i , 1996 .

[79]  N. Scott,et al.  THE MBH–LSPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES , 2012, 1211.3199.

[80]  S. E. Persson,et al.  GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.

[81]  Zong-Hong Zhu,et al.  Constraints of relic gravitational waves by pulsar timing arrays: Forecasts for the FAST and SKA projects , 2013, 1303.6718.

[82]  J. Cordes Limits to PTA sensitivity: spin stability and arrival time precision of millisecond pulsars , 2013 .

[83]  A. Sesana SELF CONSISTENT MODEL FOR THE EVOLUTION OF ECCENTRIC MASSIVE BLACK HOLE BINARIES IN STELLAR ENVIRONMENTS: IMPLICATIONS FOR GRAVITATIONAL WAVE OBSERVATIONS , 2010, 1006.0730.

[84]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[85]  R. Spurzem,et al.  Collisional Dynamics around Binary Black Holes in Galactic Centers , 2001, astro-ph/0103410.

[86]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[87]  J. Gair,et al.  Estimating the sensitivity of pulsar timing arrays , 2014, 1406.5199.

[88]  R. Manchester,et al.  Binary supermassive black hole environments diminish the gravitational wave signal in the pulsar timing band , 2014, 1404.5183.

[89]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[90]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[91]  Fredrick A. Jenet,et al.  Detecting the Stochastic Gravitational Wave Background Using Pulsar Timing , 2005 .

[92]  J. Papaloizou,et al.  THE EVOLUTION OF A SUPERMASSIVE BINARY CAUSED BY AN ACCRETION DISC , 1998, astro-ph/9812198.

[93]  Gravitational Waves from Eccentric Intermediate-mass Black Hole Binaries , 2009, 0901.0604.

[94]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[95]  Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.