THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND
暂无分享,去创建一个
Yan Wang | Zaven Arzoumanian | Rutger van Haasteren | Kevin Stovall | Joseph Simon | Weiwei Zhu | Adam Brazier | Shami Chatterjee | Maura McLaughlin | Michele Vallisneri | Joseph Lazio | Sarah Burke-Spolaor | Scott Ransom | Xavier Siemens | Emmanuel Fonseca | Alberto Sesana | Neil Cornish | Sean McWilliams | D. Stinebring | J. Luo | S. McWilliams | X. Siemens | S. Chamberlin | N. Cornish | R. Lynch | L. Sampson | S. Burke-Spolaor | J. Cordes | Z. Arzoumanian | M. Mclaughlin | J. Swiggum | D. Lorimer | S. Ransom | A. Brazier | D. Nice | J. Ellis | F. Jenet | V. Kaspi | I. Stairs | K. Stovall | S. Chatterjee | T. Lazio | P. Demorest | M. Gonzalez | A. Sesana | M. Vallisneri | Y. Wang | M. Lam | B. Christy | C. Mingarelli | R. Haasteren | N. Palliyaguru | I. Stairs | T. Pennucci | L. Levin | R. Ferdman | S. Sanidas | E. Fonseca | M. Jones | A. Lommen | D. Madison | T. Dolch | N. Garver-Daniels | J. Simon | M. Koop | K. Crowter | Glenn Jones | Ryan Lynch | Ingrid Stairs | Dustin Madison | Chiara Mingarelli | Paul Demorest | Duncan Lorimer | Tim Pennucci | Dan Stinebring | Nipuni Palliyaguru | Stephen Taylor | Sydney Chamberlin | Brian Christy | Jim Cordes | Xihao Deng | Tim Dolch | Justin Ellis | Rob Ferdman | Nate Garver-Daniels | Fredrick Jenet | Vicky Kaspi | Michael Koop | Michael Lam | Lina Levin | Andrea Lommen | Jin Luo | David Nice | Laura Sampson | Sotiris Sanidas | Joseph Swiggum | X. Deng | J. Luo | S. Taylor | J. Cordes | Y. Wang | W. W. Zhu | G. Jones | R. V. Haasteren | G. Jones | S. Chatterjee | V. Kaspi | L. Levin | S. Taylor | W. Zhu | B. Christy | X. Deng | S. Chatterjee
[1] S. McWilliams,et al. Constraining the Solution to the Last Parsec Problem with Pulsar Timing , 2015, 1503.02662.
[2] B. Hsieh,et al. EVOLUTION OF THE MAJOR MERGER GALAXY PAIR FRACTION AT z < 1 , 2014, 1408.3468.
[3] A. Sesana,et al. Gas‐driven massive black hole binaries: signatures in the nHz gravitational wave background , 2010, 1002.0584.
[4] Cosmic string production towards the end of brane inflation , 2002, hep-th/0204074.
[5] Yen-Ting Lin,et al. A NEW TEST OF THE STATISTICAL NATURE OF THE BRIGHTEST CLUSTER GALAXIES , 2009, 0904.3098.
[6] A. V. D. Wel,et al. An over-massive black hole in the compact lenticular galaxy NGC 1277 , 2012, Nature.
[7] L. Ho,et al. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.
[8] Hans-Walter Rix,et al. On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.
[9] Chung-Pei Ma,et al. REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.
[10] B. Stappers,et al. Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array , 2012, 1201.2419.
[11] Caltech,et al. Long-Term Evolution of Massive Black Hole Binaries , 2002, astro-ph/0212459.
[12] A. Sesana. Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band , 2012, 1211.5375.
[13] Tod R. Lauer,et al. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.
[14] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .
[15] A. Jaffe,et al. Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.
[16] L. Price,et al. Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.
[17] J. Gair,et al. Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.
[18] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[19] Andrei Linde,et al. A new inflationary universe scenario: A possible solution of the horizon , 1982 .
[20] E. Emsellem. Is the black hole in NGC 1277 really overmassive , 2013, 1305.3630.
[21] B. Stappers,et al. PROJECTED CONSTRAINTS ON THE COSMIC (SUPER)STRING TENSION WITH FUTURE GRAVITATIONAL WAVE DETECTION EXPERIMENTS , 2012, 1211.5042.
[22] J. Cordes,et al. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS , 2010, 1010.4794.
[23] C. Mingarelli,et al. Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays , 2014, 1408.6840.
[24] E. Thrane,et al. Sensitivity curves for searches for gravitational-wave backgrounds , 2013, 1310.5300.
[25] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[26] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .
[27] J. Gair,et al. Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays , 2013, 1306.5395.
[28] Z. Haiman,et al. THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.
[29] Cosmic F- and D-strings , 2003, hep-th/0312067.
[30] Neil J. Cornish,et al. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.
[31] D. Stinebring. Effects of the interstellar medium on detection of low-frequency gravitational waves , 2013, 1310.8316.
[32] G. Hobbs,et al. Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays , 2014, 1406.5297.
[33] Black hole binary dynamics , 2002, astro-ph/0210116.
[34] E. P. S. Shellard,et al. Cosmic Strings and Other Topological Defects , 1995 .
[35] Y. Levin,et al. Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution , 2013, Science.
[36] L. Grishchuk. GRAVITON CREATION IN THE EARLY UNIVERSE , 1977 .
[37] Rainer Spurzem,et al. BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.
[38] M. Colpi. Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence , 2014, 1407.3102.
[39] A. Loeb,et al. Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays , 2002, astro-ph/0211556.
[40] T W B Kibble,et al. Topology of cosmic domains and strings , 1976 .
[41] Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16 , 2010, 1011.0718.
[42] A. Sesana. Insights into the astrophysics of supermassive black hole binaries from pulsar timing observations , 2013, 1307.2600.
[43] E. Komatsu,et al. Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model , 2006, astro-ph/0604176.
[44] A. Starobinsky,et al. A new type of isotropic cosmological models without singularity , 1980 .
[45] P. Armitage,et al. Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.
[46] I. Mandel,et al. Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.
[47] M. Vallisneri,et al. Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.
[48] S. Burke-Spolaor,et al. The sensitivity of the Parkes Pulsar Timing Array to individual sources of gravitational waves , 2010, 1005.1667.
[49] J. Gair,et al. European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.
[50] M. Rees,et al. Massive black hole binaries in active galactic nuclei , 1980, Nature.
[51] M. Vallisneri,et al. New advances in the Gaussian-process approach to pulsar-timing data analysis , 2014, 1407.1838.
[52] D. Stinebring,et al. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.
[53] S. McWilliams,et al. GRAVITATIONAL WAVES AND STALLED SATELLITES FROM MASSIVE GALAXY MERGERS AT z ⩽ 1 , 2012, 1211.5377.
[54] M. Maggiore. Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.
[55] The production, spectrum and evolution of cosmic strings in brane inflation , 2003, hep-th/0303269.
[56] M. Colpi,et al. Supermassive black hole binaries in gaseous and stellar circumnuclear discs: orbital dynamics and gas accretion , 2006, astro-ph/0612505.
[57] Zhao Wen. Constraint on the early Universe by relic gravitational waves: From pulsar timing observations , 2011 .
[58] S. Patil,et al. The effective Planck mass and the scale of inflation , 2014, The European physical journal. C, Particles and fields.
[59] J. Gair,et al. Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays , 2014, 1406.4664.
[60] Limits on the accretion rates onto massive black holes in nearby galaxies , 2000, astro-ph/0005516.
[61] University of California,et al. THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.
[62] G. Hobbs. The Parkes Pulsar Timing Array , 2009, 1307.2629.
[63] A. Hopkins,et al. Galaxy And Mass Assembly (GAMA): galaxy close pairs, mergers and the future fate of stellar mass , 2014, 1408.1476.
[64] A. Merloni,et al. Linking the fate of massive black hole binaries to the active galactic nuclei luminosity function , 2015, 1502.03101.
[65] L. Price,et al. Time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches in pulsar timing data , 2014, 1410.8256.
[66] K. Olum,et al. Number of cosmic string loops , 2013, 1309.6637.
[67] Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves , 2012, 1201.6641.
[68] Y. Mellier,et al. Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.
[69] Bruce Allen,et al. Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1999 .
[70] D. Stinebring,et al. GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2014 .
[71] Hume A. Feldman,et al. Theory of cosmological perturbations , 1992 .
[72] D. Champion,et al. The European Pulsar Timing Array and the Large European Array for Pulsars , 2013 .
[73] V. Mandic,et al. Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.
[74] R. N. Manchester,et al. Tests of General Relativity from Timing the Double Pulsar , 2006, Science.
[75] M. Hobson,et al. Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.
[76] Thibault Damour,et al. Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows , 2005 .
[77] A. Vecchio,et al. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.
[78] Gerald D. Quinlan. The dynamical evolution of massive black hole binaries i , 1996 .
[79] N. Scott,et al. THE MBH–LSPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES , 2012, 1211.3199.
[80] S. E. Persson,et al. GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.
[81] Zong-Hong Zhu,et al. Constraints of relic gravitational waves by pulsar timing arrays: Forecasts for the FAST and SKA projects , 2013, 1303.6718.
[82] J. Cordes. Limits to PTA sensitivity: spin stability and arrival time precision of millisecond pulsars , 2013 .
[83] A. Sesana. SELF CONSISTENT MODEL FOR THE EVOLUTION OF ECCENTRIC MASSIVE BLACK HOLE BINARIES IN STELLAR ENVIRONMENTS: IMPLICATIONS FOR GRAVITATIONAL WAVE OBSERVATIONS , 2010, 1006.0730.
[84] G. W. Pratt,et al. Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .
[85] R. Spurzem,et al. Collisional Dynamics around Binary Black Holes in Galactic Centers , 2001, astro-ph/0103410.
[86] P. Madau,et al. Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.
[87] J. Gair,et al. Estimating the sensitivity of pulsar timing arrays , 2014, 1406.5199.
[88] R. Manchester,et al. Binary supermassive black hole environments diminish the gravitational wave signal in the pulsar timing band , 2014, 1404.5183.
[89] Tod R. Lauer,et al. THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.
[90] D. Backer,et al. Constructing a Pulsar Timing Array , 1990 .
[91] Fredrick A. Jenet,et al. Detecting the Stochastic Gravitational Wave Background Using Pulsar Timing , 2005 .
[92] J. Papaloizou,et al. THE EVOLUTION OF A SUPERMASSIVE BINARY CAUSED BY AN ACCRETION DISC , 1998, astro-ph/9812198.
[93] Gravitational Waves from Eccentric Intermediate-mass Black Hole Binaries , 2009, 0901.0604.
[94] D. Stinebring,et al. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.
[95] Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.