DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.

A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.

[1]  Q. Cui,et al.  A modified QM/MM Hamiltonian with the Self-Consistent-Charge Density-Functional-Tight-Binding Theory for highly charged QM regions. , 2012, Journal of chemical theory and computation.

[2]  T. Frauenheim,et al.  Initial steps toward automating the fitting of DFTB Erep(r). , 2007, The journal of physical chemistry. A.

[3]  Patrick W. Fowler,et al.  Competition between Even and Odd Fullerenes: C118, C119, and C120 , 2000 .

[4]  H. Bohr,et al.  Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin , 2003 .

[5]  S. Suhai,et al.  Application of an approximate density-functional method to sulfur containing compounds , 2001 .

[6]  Sougata Pal,et al.  Self-Consistent-Charge Density-Functional Tight-Binding Parameters for Cd-X (X = S, Se, Te) Compounds and Their Interaction with H, O, C, and N. , 2011, Journal of chemical theory and computation.

[7]  G. Seifert,et al.  Density functional tight binding : Contributions from the American chemical society symposium , 2007 .

[8]  T. Heine,et al.  Dynamics of carbon clusters: chemical equilibration of rings and bi-cyclic rings , 2002 .

[9]  Patrick W. Fowler,et al.  Energetics of fullerenes with heptagonal rings , 1996 .

[10]  T. Heine,et al.  Stability and electronic properties of 3D covalent organic frameworks , 2013, Journal of Molecular Modeling.

[11]  Thomas Frauenheim,et al.  A complete set of self‐consistent charge density‐functional tight‐binding parametrization of zinc chalcogenides (ZnX; X=O, S, Se, and Te) , 2012, J. Comput. Chem..

[12]  Thomas Frauenheim,et al.  Atomistic simulations of complex materials: ground-state and excited-state properties , 2002 .

[13]  S. Irle,et al.  An n-channel two-dimensional covalent organic framework. , 2011, Journal of the American Chemical Society.

[14]  Gregory A Voth,et al.  Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. , 2013, The journal of physical chemistry. B.

[15]  Hélio A. Duarte,et al.  Density-functional based tight-binding: an approximate DFT method , 2009 .

[16]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[17]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[18]  Puja Goyal,et al.  Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water. , 2011, The journal of physical chemistry. B.

[19]  西村 好史 Development of the density-functional tight-binding method and its application in computational nanomaterial science , 2013 .

[20]  M. Elstner SCC-DFTB: what is the proper degree of self-consistency? , 2007, The journal of physical chemistry. A.

[21]  G. Seifert,et al.  Hyperdiamond and hyperlonsdaleit: Possible crystalline phases of fullerene C 28 , 2005 .

[22]  H. A. Duarte,et al.  Imogolite-like nanotubes: structure, stability, electronic and mechanical properties of the phosphorous and arsenic derivatives. , 2013, Physical chemistry chemical physics : PCCP.

[23]  Bálint Aradi,et al.  Automated Repulsive Parametrization for the DFTB Method. , 2011, Journal of chemical theory and computation.

[24]  G. Seifert,et al.  13C NMR fingerprint characterizes long time‐scale structure of Sc3N@C80 endohedral fullerene , 2004, Magnetic resonance in chemistry : MRC.

[25]  M Elstner,et al.  Quantum mechanics simulation of protein dynamics on long timescale , 2001, Proteins.

[26]  Evert Jan Baerends,et al.  Quadratic integration over the three-dimensional Brillouin zone , 1991 .

[27]  R. Nieminen,et al.  Nanoindentation of silicon surfaces: Molecular-dynamics simulations of atomic force microscopy , 2000 .

[28]  P. Fowler,et al.  C36: from dimer to bulk , 1999 .

[29]  G. Seifert,et al.  Hydrogen sieving and storage in fullerene intercalated graphite. , 2007, Nano letters.

[30]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[31]  P. Lugli,et al.  A simple tight-binding approach to Time-Dependent Density-Functional Response-Theory , 2001 .

[32]  Stephan Irle,et al.  Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers , 2005 .

[33]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[34]  T. Frauenheim,et al.  Stability of silicon carbide structures: from clusters to solid surfaces , 1996 .

[35]  G. Seifert,et al.  Structures, Energetics and Electronic Properties of Complex III—V Semiconductor Systems , 2000 .

[36]  G. Seifert,et al.  Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme , 1996 .

[37]  K. Morokuma,et al.  Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70). , 2006, The Journal of chemical physics.

[38]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[39]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[40]  E. Baerends,et al.  Precise density-functional method for periodic structures. , 1991, Physical review. B, Condensed matter.

[41]  R. Banerjee,et al.  Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. , 2012, Journal of the American Chemical Society.

[42]  G. Cuniberti,et al.  Structural stability versus conformational sampling in biomolecular systems: why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA? , 2010, The Journal of chemical physics.

[43]  Hélio A. Duarte,et al.  Imogolite nanotubes: stability, electronic, and mechanical properties. , 2007, ACS nano.

[44]  Seifert,et al.  Density-functional-based construction of transferable nonorthogonal tight-binding potentials for B, N, BN, BH, and NH. , 1995, Physical review. B, Condensed matter.

[45]  S. Irle,et al.  Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. , 2013, Journal of the American Chemical Society.

[46]  M. Elstner The SCC-DFTB method and its application to biological systems , 2006 .

[47]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[48]  K. Morokuma,et al.  Relativistic parametrization of the self-consistent-charge density-functional tight-binding method. 1. Atomic wave functions and energies. , 2007, The journal of physical chemistry. A.

[49]  R. Kaschner,et al.  A density-functional-based tight-binding scheme for the study of silicon- oxygen compounds , 1997 .

[50]  Bálint Aradi,et al.  An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium. , 2010, Journal of chemical theory and computation.

[51]  K. Müllen,et al.  A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy , 2012, Scientific Reports.

[52]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[53]  R. Banerjee,et al.  Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. , 2013, Journal of the American Chemical Society.

[54]  M. Elstner,et al.  Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. , 2009, The journal of physical chemistry. A.

[55]  H. Eschrig Optimized Lcao Method and the Electronic Structure of Extended Systems , 1989 .

[56]  G. Seifert,et al.  Optical Excitations in Cadmium Sulfide Nanoparticles , 2007 .

[57]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[58]  B Aradi,et al.  Self-interaction and strong correlation in DFTB. , 2007, The journal of physical chemistry. A.

[59]  T. Frauenheim,et al.  STM images from diamond surfaces: steps towards comparisons of experiment and theory , 1997 .

[60]  P. Fowler,et al.  Modelling the 13C NMR chemical shifts of C84 fullerenes , 2000 .

[61]  Serguei Patchkovskii,et al.  An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding. , 2005, Journal of chemical theory and computation.

[62]  K. Morokuma,et al.  Molecular and electronic structures of endohedral fullerenes, Sc2C2@C3v–C82 and Sc2@C3v–C82: Benchmark for SCC‐DFTB and proposal of new inner cluster structures , 2012 .

[63]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[64]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[65]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[66]  G. Seifert,et al.  Metal-organic frameworks: structural, energetic, electronic, and mechanical properties. , 2007, The journal of physical chemistry. B.

[67]  G. Seifert,et al.  Molecular dynamics study of the mechanical and electronic properties of carbon nanotubes. , 2005, Small.

[68]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[69]  S. Borini,et al.  Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides , 2013, 1301.3469.

[70]  P. Fowler,et al.  13C NMR Patterns of Odd-Numbered C119 Fullerenes , 2000 .

[71]  M. Elstner,et al.  Parametrization and Benchmark of DFTB3 for Organic Molecules. , 2013, Journal of chemical theory and computation.

[72]  Thomas Frauenheim,et al.  Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni. , 2007, Journal of chemical theory and computation.

[73]  Patrick W. Fowler,et al.  Boron–nitrogen analogues of the fullerenes: the isolated-square rule , 1996 .

[74]  Patrick W. Fowler,et al.  Energetics of Fullerenes with Four-Membered Rings , 1996 .

[75]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[76]  Buu Q. Pham,et al.  Quantum chemical investigation of epoxide and ether groups in graphene oxide and their vibrational spectra. , 2013, Physical chemistry chemical physics : PCCP.

[77]  G. Seifert,et al.  A Tight-Binding Treatment for 13C NMR Spectra of Fullerenes , 1999 .

[78]  Thomas Frauenheim,et al.  Identification of defects at the interface between 3C‐SiC quantum dots and a SiO2 embedding matrix , 2012 .

[79]  Structural properties of metal‐organic frameworks within the density‐functional based tight‐binding method , 2011, 1109.5312.

[80]  M. Elstner,et al.  11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore. , 2002, Biochemistry.

[81]  Q. Cui,et al.  Proton storage site in bacteriorhodopsin: new insights from quantum mechanics/molecular mechanics simulations of microscopic pK(a) and infrared spectra. , 2011, Journal of the American Chemical Society.

[82]  S. Irle,et al.  Convergence in the evolution of nanodiamond Raman spectra with particle size: a theoretical investigation. , 2010, ACS nano.

[83]  G. Seifert,et al.  Structural and Electronic Properties of Bulk Gibbsite and Gibbsite Surfaces , 2005 .

[84]  Patrick W. Fowler,et al.  Pentagon adjacency as a determinant of fullerene stability , 1999 .

[85]  M. Elstner,et al.  Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods. , 2012, The journal of physical chemistry. B.

[86]  M. Wahiduzzaman,et al.  Mechanical, Electronic, and Adsorption Properties of Porous Aromatic Frameworks , 2012 .

[87]  G. Seifert,et al.  A parallel code for a self-consistent charge density functional based tight binding method: Total energy calculations for extended systems , 1999 .

[88]  Gotthard Seifert,et al.  Density‐functional tight binding—an approximate density‐functional theory method , 2012 .

[89]  H. Eschrig,et al.  An optimized LCAO version for band structure calculations application to copper , 1978 .

[90]  G. Seifert,et al.  Density functional based calculations for Fen (n ≤ 32) , 2005 .