Theoretical Framework in the Stationary Regime

In this chapter the main theoretical tools and models used along the thesis are introduced. We will focus first on the non-interacting situation, providing a brief overview about the non-equilibrium Green function formalism. We will also discuss the minimal models including electron-electron, electron-phonon interaction and superconducting correlations at the nanoscale. Some specific methods for treating interactions are discussed in the stationary regime. The final part of the chapter is devoted to the full counting statistics analysis in both the interacting and non-interacting situations.

[1]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[2]  R. Haussmann Self-consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems , 1999 .

[3]  B. Sothmann,et al.  Detection of interactions via generalized factorial cumulants in systems in and out of equilibrium , 2015, 1507.04579.

[4]  J. P. Garrahan,et al.  Experimental Determination of Dynamical Lee-Yang Zeros. , 2016, Physical review letters.

[5]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[6]  A. Yeyati,et al.  Nonlinear effects of phonon fluctuations on transport through nanoscale junctions , 2010, 1006.0426.

[7]  Electron counting statistics and coherent states of electric current , 1996, cond-mat/9607137.

[8]  N. Agraït,et al.  Onset of energy dissipation in ballistic atomic wires. , 2001, Physical Review Letters.

[9]  P. Stegmann,et al.  Inverse counting statistics based on generalized factorial cumulants , 2016, 1611.02043.

[10]  S. Gustavsson,et al.  Counting statistics of single electron transport in a quantum dot. , 2006 .

[11]  G. Ding,et al.  Full counting statistics of a single-molecule quantum dot , 2013, 1307.0946.

[12]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[13]  Y. Nazarov,et al.  Full counting statistics of charge transfer in Coulomb blockade systems , 2002, cond-mat/0207624.

[14]  J. P. Garrahan,et al.  Quantum trajectory phase transitions in the micromaser. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  S. Maier,et al.  Charge transfer statistics of a molecular quantum dot with strong electron-phonon interaction , 2010, 1010.2918.

[16]  Zhizhou Yu,et al.  Full-counting statistics of transient energy current in mesoscopic systems , 2016, 1706.07182.

[17]  Antibunched photons emitted by a quantum point contact out of equilibrium. , 2004, cond-mat/0405018.

[18]  R. A. Blythe An introduction to phase transitions in stochastic dynamical systems , 2006 .

[19]  A. Kamenev Field Theory of Non-Equilibrium Systems , 2011 .

[20]  R A Blythe,et al.  Lee-Yang zeros and phase transitions in nonequilibrium steady states. , 2002, Physical review letters.

[21]  T. Brandes,et al.  Universal oscillations in counting statistics , 2009, Proceedings of the National Academy of Sciences.

[22]  L. Keldysh Diagram technique for nonequilibrium processes , 1964 .

[23]  A. Jauho,et al.  Counting statistics of non-Markovian quantum stochastic processes. , 2008, Physical review letters.

[24]  Phonon effects in molecular transistors: Quantal and classical treatment , 2003, cond-mat/0311503.

[25]  Datta,et al.  Current-voltage relation for asymmetric ballistic superconducting junctions. , 1996, Physical review. B, Condensed matter.

[26]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[27]  A. Yeyati,et al.  Resonant tunneling through a small quantum dot coupled to superconducting leads , 1996, cond-mat/9612193.

[28]  M. Marthaler,et al.  Statistics of voltage fluctuations in resistively shunted Josephson junctions , 2010, 1002.4420.

[29]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[30]  J. P. Garrahan,et al.  Trajectory phase transitions, Lee-Yang zeros, and high-order cumulants in full counting statistics. , 2012, Physical review letters.

[31]  J. Lowenstein,et al.  Solution of the Kondo problem , 1983 .

[32]  A. Gossard,et al.  Counting statistics and super-Poissonian noise in a quantum dot: Time-resolved measurements of elect , 2006, cond-mat/0605365.

[33]  A. Komnik,et al.  Towards full counting statistics for the Anderson impurity model , 2006 .

[34]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[35]  N. Kawakami,et al.  Exact expression of the ground-state energy for the symmetric anderson model , 1981 .

[36]  L. Levitov,et al.  Counting statistics of tunneling current , 2004 .

[37]  Louis,et al.  Interpolative solution for the periodic Anderson model of mixed-valence compounds. , 1986, Physical review. B, Condensed matter.

[38]  A. Levy Yeyati,et al.  Josephson and Andreev transport through quantum dots , 2011, 1111.4939.

[39]  Christian Schönenberger,et al.  Hybrid superconductor-quantum dot devices. , 2010, Nature nanotechnology.

[40]  A. Georges,et al.  Nonexistence of the Luttinger-Ward functional and misleading convergence of skeleton diagrammatic series for hubbard-like models. , 2014, Physical review letters.

[41]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[42]  T. Schmidt,et al.  Transient dynamics of a molecular quantum dot with a vibrational degree of freedom , 2009, 0906.4738.

[43]  James M. Hickey,et al.  Intermittency and dynamical Lee-Yang zeros of open quantum systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  A. Yeyati,et al.  Buildup of vibron-mediated electron correlations in molecular junctions , 2019, Physical Review B.

[45]  C.W.J. Beenakker,et al.  Quantum shot noise , 2003 .

[46]  Toshiaki Hayashi,et al.  Bidirectional Counting of Single Electrons , 2006, Science.

[47]  Y. Naveh,et al.  Proximity effect and multiple Andreev reflections in gold atomic contacts. , 2001, Physical review letters.

[48]  Zhizhou Yu,et al.  Full-counting statistics of energy transport of molecular junctions in the polaronic regime , 2016, 1612.02887.

[49]  T. Brandes,et al.  Strong suppression of shot noise in a feedback-controlled single-electron transistor. , 2016, Nature nanotechnology.

[50]  Michel Devoret,et al.  Conduction Channel Transmissions of Atomic-Size Aluminum Contacts , 1997 .

[51]  D. Ivanov,et al.  Allowed charge transfers between coherent conductors driven by a time-dependent scatterer. , 2007, Physical review letters.

[52]  P. Wiegmann,et al.  Towards an Exact Solution of the Anderson Model - Phys. Lett. A80 163 (1980) , 1980 .

[53]  M. Buttiker,et al.  Factorial cumulants reveal interactions in counting statistics , 2010, 1012.0750.

[54]  J. P. Garrahan,et al.  Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers , 2009, Science.

[55]  C. Beenakker,et al.  Josephson current through a superconducting quantum point contact shorter than the coherence length. , 1991, Physical review letters.

[56]  White Ja Self-consistent Green functions for the Anderson impurity model. , 1992 .

[57]  Hamiltonian approach to the transport properties of superconducting quantum point contacts. , 1996, Physical review. B, Condensed matter.

[58]  R. Monreal,et al.  Equation of motion approach to the Anderson-Holstein Hamiltonian , 2009 .

[59]  James M. Hickey,et al.  Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Gordey B. Lesovik,et al.  Charge distribution in quantum shot noise , 1993 .

[61]  F. Anders A numerical renormalization group approach to non-equilibrium Green functions for quantum impurity models , 2008, 0803.3004.

[62]  Universal features of electron-phonon interactions in atomic wires , 2005, cond-mat/0511287.

[63]  D. Langreth Friedel Sum Rule for Anderson's Model of Localized Impurity States , 1966 .

[64]  R. Haug,et al.  High-order cumulants in the counting statistics of asymmetric quantum dots , 2010, 1006.0630.

[65]  A. Yeyati,et al.  Dressed tunneling approximation for electronic transport through molecular transistors , 2014, 1402.0386.

[66]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[67]  D. Segal,et al.  Full counting statistics of vibrationally assisted electronic conduction: Transport and fluctuations of thermoelectric efficiency , 2015, 1508.02475.

[68]  W. Wegscheider,et al.  Bimodal counting statistics in single-electron tunneling through a quantum dot , 2007, 0705.2420.

[69]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[70]  A. Aharony,et al.  Full-counting statistics for molecular junctions: Fluctuation theorem and singularities , 2012, 1210.1971.

[71]  Hideo Aoki,et al.  Interaction quench in the Holstein model: Thermalization crossover from electron- to phonon-dominated relaxation , 2014, 1407.8288.

[72]  M. Baldo,et al.  A new solution to the Anderson-Newns Hamiltonian of chemisorption , 1982 .

[73]  C. Hierold,et al.  Franck–Condon blockade in suspended carbon nanotube quantum dots , 2008, 0812.3826.

[74]  D. Ivanov,et al.  Factorization of quantum charge transport for noninteracting fermions , 2009, 0902.4151.

[75]  Conditional statistics of electron transport in interacting nanoscale conductors , 2007, cond-mat/0701728.