Evolutionary Formation of New Centromeres in Macaque

A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.

[1]  D. Haussler,et al.  The structure and evolution of centromeric transition regions within the human genome , 2004, Nature.

[2]  G. Roizes Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues. Mechanism and implications for centromere functioning , 2006, Nucleic acids research.

[3]  E. Eichler,et al.  Punctuated duplication seeding events during the evolution of human chromosome 2p11. , 2005, Genome research.

[4]  K. Choo,et al.  Neocentromeres: role in human disease, evolution, and centromere study. , 2002, American journal of human genetics.

[5]  E. Eichler,et al.  Recurrent sites for new centromere seeding. , 2004, Genome research.

[6]  K. Choo,et al.  Transcription within a functional human centromere. , 2003, Molecular cell.

[7]  Mario Ventura,et al.  Chromosome 6 phylogeny in primates and centromere repositioning. , 2003, Molecular biology and evolution.

[8]  B. Wakimoto,et al.  Heterochromatin and gene expression in Drosophila. , 1995, Annual review of genetics.

[9]  E. Eichler,et al.  Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs , 2006, Genome Biology.

[10]  Jonathan M. Mudge,et al.  Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. , 2003, Genome research.

[11]  S. Henikoff,et al.  Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Wienberg,et al.  "Bar-coding" primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype , 2001, Human Genetics.

[13]  R. O’Neill,et al.  Retention of latent centromeres in the Mammalian genome. , 2005, The Journal of heredity.

[14]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[15]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[16]  Nicoletta Archidiacono,et al.  Ancestral genomes reconstruction: an integrated, multi-disciplinary approach is needed. , 2006, Genome research.

[17]  K. Choo,et al.  Human centromere repositioning "in progress". , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Jauch,et al.  Homologies in human and Macasa fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries , 2004, Chromosoma.

[19]  Cheng Lu,et al.  Genomic and Genetic Characterization of Rice Cen3 Reveals Extensive Transcription and Evolutionary Implications of a Complex Centromere[W][OA] , 2006, The Plant Cell Online.

[20]  R. Quatrano Genomics , 1998, Plant Cell.

[21]  Jeffrey M Craig,et al.  Permissive Transcriptional Activity at the Centromere through Pockets of DNA Hypomethylation , 2005, PLoS genetics.

[22]  I. Dunham,et al.  DNA sequence and analysis of human chromosome 9 , 2003, Nature.

[23]  J. Wienberg,et al.  Fluorescence in situ hybridization (FISH) maps chromosomal homologies between the dusky titi and squirrel monkey , 2000, American journal of primatology.

[24]  S. Henikoff,et al.  Sequencing of a rice centromere uncovers active genes , 2004, Nature Genetics.

[25]  E. Eichler,et al.  Primate segmental duplications: crucibles of evolution, diversity and disease , 2006, Nature Reviews Genetics.

[26]  P. Warburton,et al.  Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. , 2003, Human molecular genetics.

[27]  J. Botto,et al.  The plant cell , 2007, Plant Molecular Biology Reporter.

[28]  E. Eichler,et al.  A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. , 2006, Genome research.

[29]  K. Choo Centromere DNA dynamics: latent centromeres and neocentromere formation. , 1997, American journal of human genetics.

[30]  M. Mancini,et al.  Molecular cytogenetic resources for chromosome 4 and comparative analysis of phylogenetic chromosome IV in great apes. , 2000, Genomics.