Tangent Graeffe iteration

Summary. Graeffe iteration was the choice algorithm for solving univariate polynomials in the XIX-th and early XX-th century. In this paper, a new variation of Graeffe iteration is given, suitable to IEEE floating-point arithmetics of modern digital computers. We prove that under a certain generic assumption the proposed algorithm converges. We also estimate the error after N iterations and the running cost. The main ideas from which this algorithm is built are: classical Graeffe iteration and Newton Diagrams, changes of scale (renormalization), and replacement of a difference technique by a differentiation one. The algorithm was implemented successfully and a number of numerical experiments are displayed.

[1]  Gregorio Malajovich,et al.  On the Geometry of Graeffe Iteration , 2001, J. Complex..

[2]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[3]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[4]  Prasanta K. Jana,et al.  Fast parallel algorithms for Graeffe's root squaring technique , 1998 .

[5]  Victor Y. Pan,et al.  On Isolation of Real and Nearly Real Zeros of a Univariate Polynomial and Its Splitting into Factors , 1996, J. Complex..

[6]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[7]  A. A. Grau On the Reduction of Number Range in the Use of the Graeffe Process , 1963, JACM.

[8]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[9]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[10]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[11]  John H. Reif,et al.  An Efficient Algorithm for the Complex Roots Problem , 1996, J. Complex..

[12]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[13]  M. A. Jenkins,et al.  Algorithm 419: zeros of a complex polynomial [C2] , 1972, CACM.

[14]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[15]  Curtis T. McMullen,et al.  Complex Dynamics and Renormalization , 1994 .

[16]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[17]  Leah H. Jamieson,et al.  A Highly Parallel Algorithm for Root Extraction , 1989, IEEE Trans. Computers.

[18]  Alexandre Ostrowski Recherches sur la méthode de graeffe et les zéros des polynomes et des séries de laurent , 1940 .

[19]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[20]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[21]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[22]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[23]  Gregorio Malajovich,et al.  On Generalized Newton Algorithms: Quadratic Convergence, Path-Following and Error Analysis , 1994, Theor. Comput. Sci..

[24]  G. Malajovich,et al.  A fast and stable algorithm for splitting polynomials , 1997 .

[25]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[26]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[27]  Peter Henrici,et al.  Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions , 1986 .

[28]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[29]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[30]  J.-P. Dedieu A propos de la méthode de Dandelin-Graeffe , 1989 .

[31]  Vladimir Igorevich Arnolʹd,et al.  Les méthodes mathématiques de la mécanique classique , 1976 .

[32]  Peter Kirrinnis,et al.  Partial Fraction Decomposition in (z) and Simultaneous Newton Iteration for Factorization in C[z] , 1998, J. Complex..

[33]  G. Smeal,et al.  On Graeffe's Method for Complex Roots of Algebraic Equations , 1924 .

[34]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[35]  M. A. Jenkins,et al.  Algorithm 493: Zeros of a Real Polynomial [C2] , 1975, TOMS.

[36]  Victor Y. Pan,et al.  Graeffe's, Chebyshev-like, and Cardinal's Processes for Splitting a Polynomial into Factors , 1996, J. Complex..