Nonbinary quantum error-correcting codes from algebraic curves
暂无分享,去创建一个
[1] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.
[2] M. Tsfasman,et al. Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .
[3] T. Beth,et al. On optimal quantum codes , 2003, quant-ph/0312164.
[4] N. Sloane,et al. Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.
[5] N. Sloane,et al. Quantum Error Correction Via Codes Over GF , 1998 .
[6] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[7] Adam D. Smith,et al. Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[8] Ryutaroh Matsumoto,et al. Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[9] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[10] S. G. Vladut,et al. Algebraic-Geometric Codes , 1991 .
[11] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[12] Hao Chen. Some good quantum error-correcting codes from algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.
[13] J. Schwinger. UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[14] H. Stichtenoth,et al. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .
[15] Stephen M. Barnett,et al. Quantum information , 2005, Acta Physica Polonica A.
[16] R. Matsumoto,et al. Constructing Quantum Error-Correcting Codes for pm-State System from Classical Error-Correcting Codes , 1999, quant-ph/9911011.
[17] Steane,et al. Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[18] Keqin Feng,et al. Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.
[19] Eric M. Rains. Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.
[20] Hao Chen,et al. Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.
[21] S. Litsyn,et al. Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.
[22] Alexei E. Ashikhmin,et al. Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.