On the generalized Massey–Rolfsen invariant for link maps

For K = K1t . . .tKs and a link map f : K → R letK = ⊔ i<j Ki×Kj , define a map f :K → Sm−1 by f(x, y) = (fx− fy)/|fx− fy| and a (generalized) Massey– Rolfsen invariant α(f) ∈ πm−1(K) to be the homotopy class of f . We prove that for a polyhedron K of dimension ≤ m − 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1-1 map from the set of link maps f : K → R up to link concordance to πm−1(K). If K1, . . . ,Ks are closed highly homologically connected manifolds of dimension p1, . . . , ps (in particular, homology spheres), then πm−1(K) ∼= ⊕ i<j π S pi+pj−m+1.

[1]  R. F. Sayakhova Homotopy Classification of Singular Links of Type (1,1,m;3) with m>1 , 2002 .

[2]  Uwe Kaiser,et al.  Link homotopy in the 2-metastable range , 1998 .

[3]  W. Massey Homotopy classification of 3-component links of codimension greater than 2 , 1990 .

[4]  U. Koschorke On link maps and their homotopy classification , 1990 .

[5]  L. Harris Intersections and embeddings of polyhedra , 1969 .

[6]  B. Gray ON THE ITERATED SUSPENSION , 1988 .

[7]  P. Kirk Link homotopy with one codimension two component , 1990 .

[8]  Jack Segal,et al.  Quasi embeddings and embeddings of polyhedra in Rm , 1992 .

[9]  C. Weber Plongements de polyèdres dans le domaine métastable , 1967 .

[10]  A. Skopenkov On the deleted product criterion for embeddability of manifolds in $ \Bbb {R}^m $ , 1997 .

[11]  U. Koschorke Link maps and the geometry of their invariants , 1988 .

[12]  Dušan D. Repovš,et al.  Embeddability and isotopy of polyhedra in Euclidean spaces , 1996 .

[13]  M. Kervaire An Interpretation of G. Whitehead's Generalization of H. Hopf's Invariant , 1959 .

[14]  A. Skopenkov On the deleted product criterion for embeddability of manifolds in Rm , 1998 .

[15]  Jean-Pierre Serre,et al.  Groupes d'homotopie et classes des groupes abeliens , 1953 .

[16]  A. Skopenkov,et al.  On the deleted product criterion for embeddability in $\mathbb R^m$ , 1998 .

[17]  Dušan Repovš,et al.  On intersections of compacta of complementary dimensions in Euclidean space , 1991 .

[18]  Jack Segal,et al.  Embeddings of polyhedra in Rm and the deleted product obstruction , 1998 .

[19]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[20]  H. Toruńczyk,et al.  Moving compacta in Rm apart , 1991 .

[21]  G. P. Scott Homotopy links , 1968 .

[22]  Dušan Repovš,et al.  A deleted product criterion for approximability of maps by embeddings , 1998 .