On charged-surface models and the origin of field adsorption

[1]  N. Ernst Field adsorption of helium and neon on tungsten: An energy-resolved atom-probe study , 1989 .

[2]  G. Aers,et al.  Electric field and Ag(001) surface electronic structure , 1989 .

[3]  H. Kreuzer,et al.  Dispersion and polarization forces between atoms and solids in high electric fields , 1988 .

[4]  T. Tsong Studies of solid surfaces at atomic resolution: Atom-probe and field ion microscopy , 1988 .

[5]  J. Inglesfield The screening of an electric field at an Al(001) surface , 1987 .

[6]  F. Schreier,et al.  Self-consistent electron densities of a semi-infinite jellium metal surface in strong static electrical fields , 1987 .

[7]  Ernst,et al.  Field adsorption of helium on tungsten. , 1986, Physical review letters.

[8]  H. Kreuzer,et al.  Field adsorption of rare gases , 1986 .

[9]  Gerhardts,et al.  Self-consistent calculation of electron-density profiles at strongly charged jellium surfaces. , 1986, Physical review. B, Condensed matter.

[10]  D. Tománek,et al.  Tight-binding approach to field desorption: N2 on Fe(111) , 1985 .

[11]  R. Forbes Seeing atoms: the origins of local contrast in field-ion images , 1985 .

[12]  T. Tsong,et al.  Field adsorption of inert gas atoms on the tungsten surface: A pulsed-laser atom-probe study , 1985 .

[13]  T. Tsong The kinetics of field adsorption , 1984 .

[14]  R. Good,et al.  Surface model for field emission processes , 1983 .

[15]  Herbert H. H. Homeier,et al.  Effects of local field variations on the contrast of a field-ion microscope , 1983 .

[16]  R. Forbes,et al.  A fresh look at the electric-field dependence of surface-atom binding energy , 1982 .

[17]  R. Forbes Progress with the theory of noble-gas field adsorption , 1981 .

[18]  R. Forbes The influence of hyperpolarisability and field-gradient polarisability on field adsorption binding energies for He on W(111) , 1981 .

[19]  Richard G. Forbes,et al.  Derivation of surface‐atom polarizability from field‐ion energy deficits , 1980 .

[20]  R. Forbes,et al.  An array model for the field adsorption of helium on tungsten (111) , 1980 .

[21]  R. Culbertson,et al.  Field ionization of surface absorbates , 1979 .

[22]  R. Forbes Atomic polarisability values in the SI system , 1977 .

[23]  W. Kohn,et al.  Theory of Metal Surfaces: Induced Surface Charge and Image Potential. , 1973 .

[24]  J. Jones,et al.  The effect of neon on helium ion imaging in the field ion microscope , 1972 .

[25]  K. Rendulic Measurements on field adsorption of neon and helium and the field ionization of a helium-neon mixture , 1971 .

[26]  E. Müller,et al.  Field Adsorption of Inert‐Gas Atoms , 1971 .

[27]  W. Schmidt,et al.  Field ion microscopic observation of interaction phenomena of neon atoms with platinum and platinum-gold alloy surfaces , 1971 .

[28]  E. Müller,et al.  Field Adsorption of Inert-Gas Atoms on Field Ion Emitter Surfaces , 1970 .

[29]  E. Müller,et al.  Field adsorption and desorption of helium and neon , 1969 .

[30]  E. Müller,et al.  Effects of Static-Field Penetration and Atomic Polarization on the Capacity of a Capacitor, Field Evaporation, and Field Ionization Processes , 1969 .

[31]  T. Rhodin,et al.  Atomic Binding of Transition Metals on Clean Single‐Crystal Tungsten Surfaces , 1968 .

[32]  P. Morse,et al.  Classical Electricity and Magnetism , 1956 .

[33]  Peter H. Bartels,et al.  Field ion microscopy;: Principles and applications, , 1969 .