Influence of Er3+ Concentration in Er:Ggag Crystal on Spectroscopic and Laser Properties

[1]  M. Nikl,et al.  Tunable resonantly pumped Er:GGAG laser , 2021, Laser Physics.

[2]  W. Ryba-Romanowski,et al.  Phonon Sideband Analysis and Near-Infrared Emission in Heavy Metal Oxide Glasses , 2020, Materials.

[3]  H. Jelínková,et al.  Er-doped crystalline active media for ~ 3 μm diode-pumped lasers , 2020 .

[4]  D. Sun,et al.  Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er:YSGG crystal , 2020 .

[5]  R. Yasuhara,et al.  2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er:YAP crystal at room temperature. , 2019, Optics express.

[6]  X. Tao,et al.  Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals , 2019, CrystEngComm.

[7]  H. Jelínková,et al.  Line-tunable Er:GGAG laser. , 2018, Optics letters.

[8]  Helena Jelínková,et al.  Yb:YAG disc for high energy laser systems , 2017, LASE.

[9]  Karl Unterrainer,et al.  High brightness diode pumped Er:YAG laser system at 2.94 µm with nearly 1kW peak power , 2016, SPIE LASE.

[10]  T. Sanamyan,et al.  Diode pumped cascade Er:Y2O3 laser , 2015 .

[11]  Yan Wang,et al.  Diode-End-Pumped Midinfrared Multiwavelength Er:Pr:GGG Laser , 2014, IEEE Photonics Technology Letters.

[12]  Markus P. Hehlen,et al.  50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application , 2013 .

[13]  M. Kanskar,et al.  High power diode-pumped 2.7-μm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency. , 2011, Optics express.

[14]  Nikolay Ter-Gabrielyan,et al.  Temperature dependence of a diode-pumped cryogenic Er:YAG laser. , 2009, Optics express.

[15]  Antoine Godard,et al.  Infrared (2–12 μm) solid-state laser sources: a review , 2007 .

[16]  R. Bartram,et al.  Crystal-Field Engineering of Solid-State Laser Materials , 2000 .

[17]  F. Vernon,et al.  Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser. , 1999, Optics letters.

[18]  C. K. Jayasankar,et al.  Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses , 1996 .

[19]  H. Weidner,et al.  Photoluminescence properties of Cr:Er:GGG , 1991 .

[20]  Michael Bass,et al.  Effects of energy transfer among Er 3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y 3 Al 5 O 12 , 1990 .

[21]  Günter Huber,et al.  Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature , 1988 .

[22]  T. M. Murina,et al.  Cooperative process in Y3Al5O12:Er3+ crystals , 1986 .

[23]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[24]  V. Fedorov,et al.  Spectroscopic properties and 3 μm stimulated emission of Er3+ ions in the (Y1−xErx)3Al5O12 and (Lu1−xEr3)3Al5O12 garnet crystal systems , 1982 .

[25]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[26]  T. M. Murina,et al.  Nonradiative losses due to the 4I11/2–4I13/2 transition of the Er3+ ion in Y3Al5O12, Gd3Sc2Al3O12, Y3Ga5O12, Gd3Ga5O12, and CaF2 crystals , 1978 .

[27]  T. M. Murina,et al.  BRIEF COMMUNICATIONS: Cross section of the 4I11/2-4I13/2 laser transition in Er3+ ions in yttrium-erbium-aluminum garnet crystals , 1977 .

[28]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[29]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[30]  K. Binnemans,et al.  Chapter 167 Spectral intensities of f-f transitions , 1998 .