Galaxy clusters at 0.3

The observed evolution of the galaxy cluster X-ray integral temperature distribution function between z=0.05 and z=0.32 is used in an attempt to constrain the value of the density parameter, Ω0, for both open and spatially flat universes. We estimate the overall uncertainty in the determination of both the observed and predicted galaxy cluster X-ray integral temperature distribution functions at z=0.32 by carrying out Monte Carlo simulations, where we take into careful consideration all the most important sources of possible error. We include the effect of the formation epoch on the relation between virial mass and X-ray temperature, improving on the assumption that clusters form at the observed redshift which leads to an overestimate of Ω0. We conclude that at present both the observational data and the theoretical modelling carry sufficiently large associated uncertainties to prevent an unambiguous determination of Ω0. We find that values of Ω0 around 0.75 are most favoured, with Ω0<0.3 excluded with at least 90 per cent confidence. In particular, the Ω0=1 hypothesis is found to be still viable as far as this data set is concerned. As a by-product, we also use the revised data on the abundance of galaxy clusters at z=0.05 to update the constraint on σ8 given by Viana & Liddle, finding slightly lower values than before.

[1]  S. Cole,et al.  Measuring Ω0 using cluster evolution , 1998 .

[2]  G. Tormen THE ASSEMBLY OF MATTER IN GALAXY CLUSTERS , 1998 .

[3]  S. Cole,et al.  Measuring omega(0) using cluster evolution , 1998, astro-ph/9802350.

[4]  S. Allen,et al.  The impact of cooling flows on the TX–LBol relation for the most luminous clusters , 1998, astro-ph/9802218.

[5]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[6]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[7]  J. Henry A Measurement of the Density Parameter Derived from the Evolution of Cluster X-Ray Temperatures , 1997 .

[8]  Xiaohui Fan,et al.  Determining the Amplitude of Mass Fluctuations in the Universe , 1997, astro-ph/9709265.

[9]  J. Silk,et al.  Gravitational Magnification of the Cosmic Microwave Background , 1997, astro-ph/9708059.

[10]  P. Mazzotta,et al.  Is the Cluster Temperature Function a Reliable Test for Ω0? , 1997, astro-ph/9705167.

[11]  T. Kitayama,et al.  Constraints on the Fluctuation Amplitude and Density Parameter from X-Ray Cluster Number Counts , 1997, astro-ph/9702017.

[12]  K. Koyama,et al.  X-Ray Properties of Early-Type Galaxies as Observed with ASCA , 1997, astro-ph/9701077.

[13]  B. Peterson,et al.  The parkes half-jansky flat-spectrum sample , 1996, astro-ph/9609019.

[14]  R. Nichol,et al.  Evolution in the X-Ray Cluster Luminosity Function Revisited , 1996, astro-ph/9611182.

[15]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[16]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[17]  P. Monaco The Mass Function of Cosmic Structures with Nonspherical Collapse , 1994, astro-ph/9406029.

[18]  G. Luppino,et al.  The EMSS catalog of x-ray-selected clusters of galaxies. 1. An atlas of CCD images of 41 distant clusters , 1994, astro-ph/9405069.

[19]  A. Edge,et al.  Cooling flows and the X-ray luminosity–temperature relation for clusters , 1994 .

[20]  F. Bernardeau The Nonlinear Evolution of Rare Events , 1993, astro-ph/9311066.

[21]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[22]  A. Evrard,et al.  A Simulation of the Intracluster Medium With Feedback from Cluster Galaxies , 1993, astro-ph/9309050.

[23]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[24]  H. Hanami On cosmological constraints from statistics of X-ray clusters , 1993 .

[25]  W. Forman,et al.  A catalog of intracluster gas temperatures , 1993 .

[26]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[27]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[28]  S. Morris,et al.  The extended medium sensitivity survey distant cluster sample - X-ray data and interpretation of the luminosity evolution , 1992 .

[29]  D. Reuter The Contribution of Methanol to the 3.4 Micron Emission Feature in Comets , 1992 .

[30]  P. Lilje Abundance of rich clusters of galaxies : a test for cosmological parameters , 1992 .

[31]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[32]  Keith A. Arnaud,et al.  A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function , 1991 .

[33]  William H. Press,et al.  Numerical recipes , 1990 .

[34]  Keith A. Arnaud,et al.  An X-ray flux-limited sample of clusters of galaxies : evidence for evolution of the luminosity function. , 1990 .

[35]  S. Morris,et al.  The Extended Medium Sensitivity Survey distant cluster sample : X-ray cosmological evolution , 1990 .

[36]  S. Borgani,et al.  Statistics of matter distribution from halo dynamics , 1990 .

[37]  G. Efstathiou,et al.  Galaxy clusters and the amplitude of primordial fluctuations , 1990 .

[38]  C. Baugh,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[39]  A. Evrard Biased Cold Dark Matter Theory: Trouble from Rich Clusters? , 1989 .

[40]  P. Goldsmith,et al.  SEARCH FOR MOLECULAR-OXYGEN IN VII-ZW-31 , 1989 .

[41]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[42]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .