Failure analysis of CO2 corrosion of natural gas pipeline under flowing conditions

[1]  Wei Wu,et al.  Under-deposit corrosion of tubing served for injection and production wells of CO2 flooding , 2021 .

[2]  Zhiming Yu,et al.  Major corrosion influence factors analysis in the production well of CO2 flooding and the optimization of relative anti-corrosion measures , 2021 .

[3]  Subhash N. Shah,et al.  Corrosion of carbon steel in CO2 saturated brine at elevated temperatures , 2021 .

[4]  R. Ahmed,et al.  The effect of fluid flow on CO2 corrosion of high-strength API carbon steels , 2020 .

[5]  Fu-hui Wang,et al.  Corrosion failure analysis of the 45-degree elbow in a natural gas gathering pipeline by experimental and numerical simulation , 2020 .

[6]  Zhenyao Wang,et al.  Effect of alternating current frequency on corrosion behavior of X80 pipeline steel in coastal saline soil , 2020 .

[7]  He Chuan,et al.  Effects of temperature on the corrosion behaviour of X70 steel in CO2-Containing formation water , 2020 .

[8]  Yueshe Wang,et al.  A fully coupled model of hydrodynamic-chemical-electrochemical processes for CO2 uniform corrosion in multi-physics environment , 2020 .

[9]  Xu Han,et al.  On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products , 2020 .

[10]  Y. F. Cheng,et al.  Modeling of local buckling of corroded X80 gas pipeline under axial compression loading , 2020 .

[11]  Y. F. Cheng,et al.  Failure pressure prediction by defect assessment and finite element modelling on natural gas pipelines under cyclic loading , 2020 .

[12]  M. Sadeghi,et al.  Failure analysis of an air-cooled heat exchanger in natural gas dehydration unit , 2020 .

[13]  Xiaogang Li,et al.  Comparison of the characteristics of corrosion scales covering 3Cr steel and X60 steel in CO2-H2S coexistence environment , 2020 .

[14]  Dalei Zhang,et al.  Development mechanism of internal local corrosion of X80 pipeline steel , 2020 .

[15]  S. Nešić,et al.  On the mechanism of carbon dioxide corrosion of mild steel: Experimental investigation and mathematical modeling at elevated pressures and non-ideal solutions , 2020 .

[16]  G. Song,et al.  Fluid structure governing the corrosion behavior of mild steel in oil–water mixtures , 2020 .

[17]  S. Nešić,et al.  The Unified Mechanism of Corrosion in Aqueous Weak Acids Solutions: A Review of the Recent Developments in Mechanistic Understandings of Mild Steel Corrosion in the Presence of Carboxylic Acids, Carbon Dioxide, and Hydrogen Sulfide , 2020 .

[18]  R. Ambat,et al.  Corrosion of carbon steel under CO2 conditions: Effect of CaCO3 precipitation on the stability of the FeCO3 protective layer , 2020 .

[19]  A. Abd,et al.  Failure analysis of carbon dioxide corrosion through wet natural gas gathering pipelines , 2019, Engineering Failure Analysis.

[20]  P. Fede,et al.  Multi-fluid approach for the numerical prediction of wall erosion in an elbow , 2019, Powder Technology.

[21]  Y. F. Cheng,et al.  Corrosion of X52 steel under thin layers of water condensate in wet gas pipelines , 2019, Journal of Natural Gas Science and Engineering.

[22]  S. Nešić,et al.  Effect of Flow and Steel Microstructure on the Formation of Iron Carbonate , 2019, CORROSION.

[23]  Xianlong Cao,et al.  Effect of microstructure on corrosion of welded joints of X80 steel in water saturated supercritical CO2 , 2019, Anti-Corrosion Methods and Materials.

[24]  Ying Ma,et al.  Corrosion behavior of 20# steel in aqueous CO2 solution under stratified gas-liquid two-phase flow condition , 2019, Anti-Corrosion Methods and Materials.

[25]  Yueshe Wang,et al.  Multi-Physics Coupling Analysis on the Time-Dependent Localized Corrosion Behavior of Carbon Steel in CO2-H2O Environment , 2019, Journal of The Electrochemical Society.

[26]  S. Nešić,et al.  A New Narrative for CO2Corrosion of Mild Steel , 2019, Journal of The Electrochemical Society.

[27]  Y. Li,et al.  The Effect of Flowing Velocity and Impact Angle on the Fluid-Accelerated Corrosion of X65 Pipeline Steel in a Wet Gas Environment Containing CO2 , 2018, Journal of Materials Engineering and Performance.

[28]  R. M. Moreira,et al.  Discussion on “Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction” by A. Kahyarian, B. Brown, S. Nesic, [Corros. Sci. 129 (2017) 146–151] , 2018 .

[29]  S. Nešić,et al.  Technical Note: Electrochemistry of CO2 Corrosion of Mild Steel: Effect of CO2 on Cathodic Currents , 2018 .

[30]  S. Nešić,et al.  Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction , 2017 .

[31]  A. Neville,et al.  In situ SR-XRD study of FeCO3 precipitation kinetics onto carbon steel in CO2-containing environments: The influence of brine pH , 2017 .

[32]  S. Nešić,et al.  Inhibition of CO2 corrosion of mild steel − Study of mechanical effects of highly turbulent disturbed flow , 2017 .

[33]  David E. Williams,et al.  Local supersaturation and the growth of protective scales during CO 2 corrosion of steel: Effect of pH and solution flow , 2017 .

[34]  R. Ahmed,et al.  Modeling and experimental studies on CO2-H2S corrosion of API carbon steels under high-pressure , 2017 .

[35]  O. R. Mattos,et al.  New insights on the role of CO2 in the mechanism of carbon steel corrosion , 2017 .

[36]  B. Craig Technical Note: Conflicting Ideas on Corrosion Products Formed on Steel in CO2 Environments at Temperatures Below 80°C , 2017 .

[37]  Haitao Hu,et al.  Modeling by computational fluid dynamics simulation of pipeline corrosion in CO2-containing oil-water two phase flow , 2016 .

[38]  S. Nešić,et al.  A direct measurement of wall shear stress in multiphase flow—Is it an important parameter in CO2 corrosion of carbon steel pipelines? , 2016 .

[39]  J. Paik,et al.  A numerical study on water wetting associated with the internal corrosion of oil pipelines , 2016 .

[40]  S. Nešić,et al.  Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: A review , 2016 .

[41]  K. Gebruers,et al.  Upgraded Model of Primary Gushing: From Nanobubble Formation until Liquid Expulsion , 2015 .

[42]  Dimitrios K. Fytanidis,et al.  Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble. , 2014, Ultrasonics sonochemistry.

[43]  W. Ahmed,et al.  Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions , 2012 .

[44]  D. Carnelli,et al.  Evaluation of the hydrodynamic pressure of cavitation impacts from stress-strain analysis and geometry of individual pits , 2012 .

[45]  Homero Castaneda,et al.  Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS , 2010 .

[46]  W. Chu,et al.  Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates , 2008 .

[47]  S. Nešić Key issues related to modelling of internal corrosion of oil and gas pipelines - A review , 2007 .

[48]  M. Veidt,et al.  Protective Iron Carbonate Films—Part 3: Simultaneous Chemo-Mechanical Removal in Single-Phase Aqueous Flow , 2007 .

[49]  M. Veidt,et al.  Protective Iron Carbonate Films— Part 2: Chemical Removal by Dissolution in Single-Phase Aqueous Flow , 2006 .

[50]  M. Veidt,et al.  Protective Iron Carbonate Films—Part 1: Mechanical Removal in Single-Phase Aqueous Flow , 2006 .

[51]  M. Ashokkumar,et al.  Effect of surfactants on inertial cavitation activity in a pulsed acoustic field. , 2005, The journal of physical chemistry. B.

[52]  Werner Lauterborn,et al.  Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary , 1989, Journal of Fluid Mechanics.

[53]  M. Keddam,et al.  Role de la diffusion dans les phenomenes de passivation et de corrosion localisee du fer en milieu acide , 1975 .

[54]  Julius Tafel,et al.  Über die Polarisation bei kathodischer Wasserstoffentwicklung , 1905 .