Control of Laser Plasma Accelerated Electrons: A Route for Compact Free Electron Lasers

The recent spectacular development of laser plasma ac- celerators that now can deliver GeV electron beams in an extremelyshortdistancemakesthemverypromising. Ap- plications for light sources based on undulator radiation and free electron laser appear as an intermediate step to move from an acceleration concept to an accelerator qual- ification. However, the presently achieved divergence and energy spread require some electron beam manipulations. The COXINEL test line was designed for enabling Free Elec- tron Laser operation with baseline reference parameters. It comprises variable permanent magnet quadrupoles for di- vergence handling, a magnetic chicane for electron energy sorting, a second set of quadrupole for chromatic focusing and an undulator for synchrotron radiation emission and/or free electron laser gain medium. The transport along the line is controlled [1]. The synchrotron radiation emitted by the undulator radiation is studied under different conditions of detection (CCD camera, spectrometer), electron beam manipulation and undulator parameters. These observations pave the way towards Laser Plasma Acceleration based Free Electron Laser.

[1]  R. Nagaoka,et al.  Development of a 2 m Pr2Fe14B Cryogenic Permanent Magnet Undulator at SOLEIL , 2013 .

[2]  A. Maier,et al.  Demonstration scheme for a laser-plasma driven free-electron laser , 2012 .

[3]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[4]  J Gautier,et al.  Control of laser plasma accelerated electrons for light sources , 2018, Nature Communications.

[5]  G. Lambert,et al.  Experiment preparation towards a demonstration of laser plasma based free electron laser amplification , 2015, Europe Optics + Optoelectronics.

[6]  M. Couprie,et al.  Tunable high gradient quadrupoles for a laser plasma acceleration based FEL , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[7]  M. Couprie,et al.  X radiation sources based on accelerators , 2008 .

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  V. Malka,et al.  Laser-driven accelerators by colliding pulses injection: A review of simulation and experimental results , 2009 .

[10]  M. Ferrario,et al.  Design considerations for table-top, laser-based VUV and X-ray free electron lasers , 2007 .

[11]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[12]  Sebastian M. Pfotenhauer,et al.  A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator , 2008 .

[13]  K. Halbach Design of permanent multipole magnets with oriented rare earth cobalt material , 1980 .

[14]  A. Hofmann Quasi-monochromatic synchrotron radiation from undulators , 1978 .

[15]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[16]  Andre Thomas,et al.  COXINEL: Towards Free Electron Laser Amplification to Qualify Laser Plasma Acceleration , 2017 .

[17]  Transport studies of LPA electron beam towards the FEL amplification at COXINEL , 2016, 1602.04965.

[18]  M. Labat,et al.  Electron and photon diagnostics for plasma acceleration-based FELs. , 2017, Journal of synchrotron radiation.

[19]  K. Flottmann,et al.  Some basic features of the beam emittance , 2003 .

[20]  W. A. Gillespie,et al.  An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator , 2014 .

[21]  J. F. van der Veen,et al.  Diffraction-limited storage rings - a window to the science of tomorrow. , 2014, Journal of synchrotron radiation.

[22]  K. Medjoubi,et al.  Development and operation of a Pr 2 Fe 14 B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line , 2016, 1612.03748.

[23]  Serge Bielawski,et al.  An application of laser–plasma acceleration: towards a free-electron laser amplification , 2016 .

[24]  L. Elias,et al.  Reducing the sensitivity of a free‐electron laser to electron energy , 1979 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  M. Couprie,et al.  Development of cryogenic undulators with PrFeB magnets at SOLEIL , 2016 .

[27]  Alexandre Loulergue,et al.  Beam manipulation for compact laser wakefield accelerator based free-electron lasers , 2015 .

[28]  L'Huillier,et al.  High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. , 1993, Physical review letters.

[29]  Alexandre Loulergue,et al.  Towards a free electron laser based on laser plasma accelerators , 2014 .

[30]  Zhirong Huang,et al.  Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. , 2012, Physical review letters.

[31]  J. Chavanne,et al.  Variable high gradient permanent magnet quadrupole (QUAPEVA) , 2017, 1706.04355.

[32]  John M. J. Madey,et al.  Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field , 1971 .

[33]  M. Labat,et al.  Robustness of a plasma acceleration based free electron laser , 2018, Physical Review Accelerators and Beams.

[34]  M. Labat,et al.  PROGRESS ON THE GENERATION OF UNDULATOR RADIATION IN THE UV FROM A PLASMA-BASED ELECTRON BEAM , 2012 .

[35]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[36]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[37]  M. Couprie,et al.  Permanent Magnet-Based Quadrupoles for Plasma Acceleration Sources , 2019, Instruments.

[38]  P. Elleaume,et al.  ACCURATE AND EFFICIENT COMPUTATION OF SYNCHROTRON RADIATION IN THE NEAR FIELD REGION , 1998 .

[39]  L. Cassinari,et al.  Strategies towards a compact XUV free electron laser adopted for the LUNEX5 project , 2016 .

[40]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[41]  L. Serafini,et al.  Intrinsic normalized emittance growth in laser-driven electron accelerators , 2013 .

[42]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[43]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[44]  C. Benabderrahmane,et al.  Cryogenic undulators , 2015, Europe Optics + Optoelectronics.

[45]  Serge Bielawski,et al.  The LUNEX5 project in France , 2013 .