Fixed point structure of the conformal factor field in quantum gravity

The O(?2) background-independent flow equations for conformally reduced gravity are shown to be equivalent to flow equations naturally adapted to scalar field theory with a wrong-sign kinetic term. This sign change is shown to have a profound effect on the renormalization group properties, broadly resulting in a continuum of fixed points supporting both a discrete and a continuous eigenoperator spectrum, the latter always including relevant directions. The properties at the Gaussian fixed point are understood in particular depth, but also detailed studies of the local potential approximation, and the full O(?2) approximation are given. These results are related to evidence for asymptotic safety found by other authors.

[1]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[2]  Christoph Rahmede,et al.  A bootstrap towards asymptotic safety , 2013 .

[3]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[4]  Tim R. Morris Derivative expansion of the exact renormalization group , 1994 .

[5]  T. Morris,et al.  The fate of non-polynomial interactions in scalar field theory , 2018 .

[6]  Three-dimensional massive scalar field theory and the derivative expansion of the renormalization group , 1996, hep-th/9612117.

[7]  Nobuyoshi Ohta,et al.  Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization , 2015, 1511.09393.

[8]  Nobuyoshi Ohta,et al.  Flow equation for $f(R)$ gravity and some of its exact solutions , 2015, 1507.00968.

[9]  Juergen A. Dietz,et al.  Redundant operators in the exact renormalisation group and in the f (R) approximation to asymptotic safety , 2013, Journal of High Energy Physics.

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  J. F. Nicoll,et al.  An exact one-particle-irreducible renormalization-group generator for critical phenomena , 1977 .

[12]  H. Stanley,et al.  Approximate Renormalization Group Based on the Wegner-Houghton Differential Generator , 1974 .

[13]  Tim R. Morris The renormalization group and two dimensional multicritical effective scalar field theory , 1995 .

[14]  Frank Saueressig,et al.  Fixed Functionals in Asymptotically Safe Gravity , 2013, 1302.1312.

[15]  R. Percacci A Short introduction to asymptotic safety , 2011, 1110.6389.

[16]  T. Thiemann Modern Canonical Quantum General Relativity: References , 2007 .

[17]  Martin Reuter,et al.  Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.

[18]  C. Pagani,et al.  The renormalization group and Weyl invariance , 2012, 1210.3284.

[19]  A. Bonanno,et al.  Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity , 2012, 1206.6531.

[20]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[21]  C. Bervillier The Wilson exact renormalization group equation and the anomalous dimension parameter , 2013, 1304.4131.

[22]  K. Wilson,et al.  Finite-lattice approximations to renormalization groups , 1975 .

[23]  Juergen A. Dietz,et al.  Background independent exact renormalization group for conformally reduced gravity , 2015, 1502.07396.

[24]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[25]  Juergen A. Dietz,et al.  Asymptotic safety in the f(R) approximation , 2012, 1211.0955.

[26]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[27]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[28]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[29]  Peter Labus,et al.  Background independence in a background dependent renormalization group , 2016, 1603.04772.

[30]  Roberto Percacci,et al.  Search of scaling solutions in scalar–tensor gravity , 2015, 1501.00888.

[31]  S. Nagy,et al.  Lectures on renormalization and asymptotic safety , 2012, 1211.4151.

[32]  Juergen A. Dietz,et al.  The local potential approximation in the background field formalism , 2013, Journal of High Energy Physics.

[33]  Franz Wegner,et al.  Some invariance properties of the renormalization group , 1974 .

[34]  D. Benedetti On the number of relevant operators in asymptotically safe gravity , 2013, 1301.4422.

[35]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[36]  Frank Saueressig,et al.  Fixed-Functionals of three-dimensional Quantum Einstein Gravity , 2012, Journal of High Energy Physics.

[37]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[38]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[39]  C. Cookson The Asymptotic Safety Scenario In Quantum Gravity , 2015 .

[40]  A. Ashtekar Lectures on Non-Perturbative Canonical Gravity , 1991 .

[41]  A. Ashtekar,et al.  Background independent quantum gravity: a status report , 2004 .

[42]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[43]  R. Percacci,et al.  Renormalization group flow of Weyl invariant dilaton gravity , 2011 .

[44]  C. Bervillier Revisiting the local potential approximation of the exact renormalization group equation , 2013, 1307.3679.

[45]  Derivative expansion of the renormalization group in O(N) scalar field theory , 1997, hep-th/9704202.

[46]  Twenty years of the Weyl anomaly , 1993, hep-th/9308075.

[47]  Frank Saueressig,et al.  A proper fixed functional for four-dimensional Quantum Einstein Gravity , 2015, 1504.07656.

[48]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[49]  T. Morris Elements of the Continuous Renormalization Group , 1998 .

[50]  Daniel F. Litim Mind The Gap , 2001 .

[51]  C. Wetterich,et al.  Gluon condensation in nonperturbative flow equations , 1997 .

[52]  Francesco Caravelli,et al.  The local potential approximation in quantum gravity , 2012, 1204.3541.

[53]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  M. Duff Observations on Conformal Anomalies , 1977 .

[55]  K. E. Newman,et al.  Scaling-field representation of Wilson's exact renormalization-group equation , 1985 .

[56]  Astrid Eichhorn,et al.  The Renormalization Group flow of unimodular f(R) gravity , 2015, 1501.05848.

[57]  D. Litim,et al.  Renormalisation group flows for gauge theories in axial gauges , 2002, hep-th/0203005.

[58]  Daniel Becker,et al.  En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.

[59]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[60]  M. Tissier,et al.  Scale invariance implies conformal invariance for the three-dimensional Ising model. , 2015, Physical review. E.

[61]  Nonpolynomial normal modes of the renormalization group in the presence of a constant vector potential background , 2004, hep-th/0403093.

[62]  R. Percacci,et al.  Conformally reduced quantum gravity revisited , 2009, 0904.2510.

[63]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[64]  Carlo Pagani,et al.  Quantization and fixed points of non-integrable Weyl theory , 2013, 1312.7767.

[65]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[66]  Frank Saueressig,et al.  RG flows of Quantum Einstein Gravity in the linear-geometric approximation , 2014, 1412.7207.

[67]  T. Morris On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.

[68]  Frank Saueressig,et al.  Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.

[69]  M.Reuter Nonperturbative Evolution Equation for Quantum Gravity , 1996, hep-th/9605030.

[70]  S. Hawking,et al.  Path Integrals and the Indefiniteness of the Gravitational Action , 1978 .