Virulence factor expression patterns in Pseudomonas aeruginosa strains from infants with cystic fibrosis

[1]  C. Whitchurch,et al.  Type 3 secretion system effector genotype and secretion phenotype of longitudinally collected Pseudomonas aeruginosa isolates from young children diagnosed with cystic fibrosis following newborn screening. , 2013, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[2]  C. von Buchwald,et al.  Colonisation and infection of the paranasal sinuses in cystic fibrosis patients is accompanied by a reduced PMN response. , 2012, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[3]  M. Elkins,et al.  Shared Pseudomonas aeruginosa genotypes are common in Australian cystic fibrosis centres , 2012, European Respiratory Journal.

[4]  D. Freire,et al.  Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1 , 2012, Applied Microbiology and Biotechnology.

[5]  L. Eberl,et al.  Cystic Fibrosis-Niche Adaptation of Pseudomonas aeruginosa Reduces Virulence in Multiple Infection Hosts , 2012, PloS one.

[6]  S. Molin,et al.  Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection , 2011, The ISME Journal.

[7]  W. Matthew Leevy,et al.  Imaging and Analysis of Pseudomonas aeruginosa Swarming and Rhamnolipid Production , 2011, Applied and Environmental Microbiology.

[8]  Deborah A Hogan,et al.  Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection. , 2011, American journal of respiratory and critical care medicine.

[9]  J. Carlin,et al.  Effect of bronchoalveolar lavage-directed therapy on Pseudomonas aeruginosa infection and structural lung injury in children with cystic fibrosis: a randomized trial. , 2011, JAMA.

[10]  A. Bragonzi,et al.  Positive Signature-Tagged Mutagenesis in Pseudomonas aeruginosa: Tracking Patho-Adaptive Mutations Promoting Airways Chronic Infection , 2011, PLoS pathogens.

[11]  T. Blackwell,et al.  Pseudomonas aeruginosa: Host defence in lung diseases , 2010, Respirology.

[12]  Jason A. Papin,et al.  Metabolic Network Analysis of Pseudomonas aeruginosa during Chronic Cystic Fibrosis Lung Infection , 2010, Journal of bacteriology.

[13]  G. O’Toole,et al.  Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression , 2010, Infection and Immunity.

[14]  T. Murray,et al.  Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. , 2010, Journal of medical microbiology.

[15]  T. Tolker-Nielsen,et al.  Quorum Sensing and Virulence of Pseudomonas aeruginosa during Lung Infection of Cystic Fibrosis Patients , 2010, PloS one.

[16]  F. Lépine,et al.  Rhamnolipids: diversity of structures, microbial origins and roles , 2010, Applied Microbiology and Biotechnology.

[17]  P. Cornelis,et al.  The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. , 2010, Microbiology.

[18]  C. Di Serio,et al.  Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. , 2009, American journal of respiratory and critical care medicine.

[19]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.

[20]  M. Elkins,et al.  Low Rates of Pseudomonas aeruginosa Misidentification in Isolates from Cystic Fibrosis Patients , 2009, Journal of Clinical Microbiology.

[21]  A. Mérieau,et al.  Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens , 2008, BMC Microbiology.

[22]  E. G. Stehling,et al.  Study of biological characteristics of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis and from patients with extra-pulmonary infections. , 2008, The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases.

[23]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Blaise R. Boles,et al.  Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms , 2005, Molecular microbiology.

[25]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[26]  M. Chandler,et al.  Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. , 2005, Microbiology.

[27]  S. Lory,et al.  A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. , 2004, Developmental cell.

[28]  M. Denton,et al.  Reduction in prevalence of chronic Pseudomonas aeruginosa infection at a regional pediatric cystic fibrosis center , 2004, Pediatric pulmonology.

[29]  S. Leppla,et al.  Phosphatidylcholine-Specific Phospholipase C and Sphingomyelinase Activities in Bacteria of the Bacillus cereus Group , 2003, Infection and Immunity.

[30]  S. Molin,et al.  Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants , 2003, Molecular microbiology.

[31]  M. Elkins,et al.  Genetic Analysis of Pseudomonas aeruginosa Isolates from the Sputa of Australian Adult Cystic Fibrosis Patients , 2002, Journal of Clinical Microbiology.

[32]  B. Tümmler,et al.  Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations , 2001, Archives of Microbiology.

[33]  D H Persing,et al.  Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing , 1995, Journal of clinical microbiology.

[34]  S. Fitzsimmons The changing epidemiology of cystic fibrosis. , 1994, Current problems in pediatrics.

[35]  D. Woods,et al.  Elevated exoenzyme expression by Pseudomonas aeruginosa is correlated with exacerbations of lung disease in cystic fibrosis. , 1993, Pediatric pulmonology.

[36]  C. Richardson,et al.  Longitudinal Studies Of Virulence Factors of Pseudomonas Aeruginosa in Cystic Fibrosis , 1991, Pathology.

[37]  I. Crawford,et al.  Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.

[38]  D. Haas,et al.  Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa , 1986 .

[39]  King Eo,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954 .

[40]  E. King,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954, The Journal of laboratory and clinical medicine.