Quantum Loewner Evolution

What is the scaling limit of diffusion limited aggregation (DLA) in the plane? This is an old and famously difficult question. One can generalize the question in two ways: first, one may consider the {\em dielectric breakdown model} $\eta$-DBM, a generalization of DLA in which particle locations are sampled from the $\eta$-th power of harmonic measure, instead of harmonic measure itself. Second, instead of restricting attention to deterministic lattices, one may consider $\eta$-DBM on random graphs known or believed to converge in law to a Liouville quantum gravity (LQG) surface with parameter $\gamma \in [0,2]$. In this generality, we propose a scaling limit candidate called quantum Loewner evolution, QLE$(\gamma^2, \eta)$. QLE is defined in terms of the radial Loewner equation like radial SLE, except that it is driven by a measure valued diffusion $\nu_t$ derived from LQG rather than a multiple of a standard Brownian motion. We formalize the dynamics of $\nu_t$ using an SPDE. For each $\gamma \in (0,2]$, there are two or three special values of $\eta$ for which we establish the existence of a solution to these dynamics and explicitly describe the stationary law of $\nu_t$. We also explain discrete versions of our construction that relate DLA to loop-erased random walk and the Eden model to percolation. A certain "reshuffling" trick (in which concentric annular regions are rotated randomly, like slot machine reels) facilitates explicit calculation. We propose QLE$(2,1)$ as a scaling limit for DLA on a random spanning-tree-decorated planar map, and QLE$(8/3,0)$ as a scaling limit for the Eden model on a random triangulation. We propose using QLE$(8/3,0)$ to endow pure LQG with a distance function, by interpreting the region explored by a branching variant of QLE$(8/3,0)$, up to a fixed time, as a metric ball in a random metric space.

[1]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[2]  I. Benjamini,et al.  KPZ in One Dimensional Random Geometry of Multiplicative Cascades , 2008, 0806.1347.

[3]  Lionel Levine,et al.  Internal DLA and the Gaussian free field , 2011, 1101.0596.

[4]  Scott Sheffield,et al.  Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. , 2009, Physical review letters.

[5]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[6]  W. Werner,et al.  Conformal loop ensembles: the Markovian characterization and the loop-soup construction , 2010, 1006.2374.

[7]  Omer Angel,et al.  Uniform Infinite Planar Triangulations , 2002 .

[8]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[9]  L. Pietronero,et al.  The Laplacian random walk , 1986 .

[10]  Murray T. Batchelor,et al.  Limits to Eden growth in two and three dimensions , 1991 .

[11]  M. B. Hastings,et al.  Laplacian growth as one-dimensional turbulence , 1998 .

[12]  Y. Watabiki Analytic Study of Fractal Structure of Quantized Surface in Two-Dimensional Quantum Gravity (Quantum Gravity(Proceedings of the 1992 YITP Workshop)) , 1993 .

[13]  Quantum Geometry of Fermionic Strings , 1981 .

[14]  L. Carleson,et al.  Aggregation in the Plane and Loewner's Equation , 2001 .

[15]  Xia Hua Thick Points of the Gaussian Free Field , 2009 .

[16]  Jason Miller Universality for SLE(4) , 2010, 1010.1356.

[17]  O. Schramm,et al.  A contour line of the continuum Gaussian free field , 2010, 1008.2447.

[18]  D. Griffeath,et al.  Internal Diffusion Limited Aggregation , 1992 .

[19]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[20]  Vincent Vargas,et al.  Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.

[21]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[22]  V. Vargas,et al.  Renormalization of Critical Gaussian Multiplicative Chaos and KPZ formula , 2012, 1212.0529.

[23]  O. Schramm,et al.  Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.

[24]  Morphology of Laplacian random walks , 2010 .

[25]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[26]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[27]  Lev N. Shchur,et al.  Morphological diagram of diffusion driven aggregate growth in plane: Competition of anisotropy and adhesion , 2011, Comput. Phys. Commun..

[28]  B. Gustafsson,et al.  Conformal and Potential Analysis in Hele-Shaw Cells , 2006 .

[29]  Fredrik Johansson,et al.  Scaling limits of anisotropic Hastings–Levitov clusters , 2009, 0908.0086.

[30]  Joachim Mathiesen,et al.  The universality class of diffusion-limited aggregation and viscous fingering , 2005 .

[31]  S. C. Ferreira,et al.  Universal fluctuations in radial growth models belonging to the KPZ universality class , 2011, 1109.4901.

[32]  W. T. Tutte On the enumeration of planar maps , 1968 .

[33]  Scott Sheffield,et al.  Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.

[34]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[35]  Olivier Bernardi,et al.  Bijective Counting of Tree-Rooted Maps and Shuffles of Parenthesis Systems , 2006, Electron. J. Comb..

[36]  S. Sheffield,et al.  Schramm-Loewner evolution and Liouville quantum gravity. , 2010, Physical review letters.

[37]  S. Smirnov,et al.  Harmonic Measure and SLE , 2008, 0801.1792.

[38]  S. Sheffield Quantum gravity and inventory accumulation , 2011, 1108.2241.

[39]  J. F. Le Gall,et al.  Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .

[40]  Nam-Gyu Kang Boundary behavior of SLE , 2006 .

[41]  J. Quastel,et al.  Renormalization Fixed Point of the KPZ Universality Class , 2011, 1103.3422.

[42]  C. Newman,et al.  Two-Dimensional Critical Percolation: The Full Scaling Limit , 2006, math/0605035.

[43]  Dietrich Stauffer,et al.  Surface structure and anisotropy of Eden clusters , 1985 .

[44]  Wendelin Werner Random planar curves and Schramm-Loewner evolutions , 2003 .

[45]  Julien Dubédat SLE and the free field: partition functions and couplings , 2007, 0712.3018.

[46]  David B. Wilson,et al.  SLE coordinate changes , 2005 .

[47]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[48]  Meakin Universality, nonuniversality, and the effects of anisotropy on diffusion-limited aggregation. , 1986, Physical review. A, General physics.

[49]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[50]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[51]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[52]  Joachim Mathiesen,et al.  Dimensions, maximal growth sites, and optimization in the dielectric breakdown model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  M. Eden A Two-dimensional Growth Process , 1961 .

[54]  Oded Schramm,et al.  Harmonic explorer and its convergence to SLE4 , 2003 .

[55]  Harry Kesten,et al.  Hitting probabilities of random walks on Zd , 1987 .

[56]  C. Garban Quantum gravity and the KPZ formula , 2012, 1206.0212.

[57]  G. Lawler The Laplacian-$b$ random walk and the Schramm-Loewner evolution , 2006 .

[58]  Abdelkader Mokkadem,et al.  Limit of normalized quadrangulations: The Brownian map , 2006 .

[59]  J. Hammersley,et al.  First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theory , 1965 .

[60]  Lionel Levine,et al.  Logarithmic fluctuations for internal DLA , 2010, 1010.2483.

[61]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[62]  Thomas C. Halsey,et al.  Diffusion‐Limited Aggregation: A Model for Pattern Formation , 2000 .

[63]  W. Werner,et al.  On Conformally Invariant CLE Explorations , 2011, 1112.1211.

[64]  Conformally invariant scaling limits: an overview and a collection of problems , 2006, math/0602151.

[65]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[66]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[67]  S. Sheffield,et al.  Imaginary geometry I: interacting SLEs , 2012, 1201.1496.

[68]  Lionel Levine,et al.  Internal DLA in Higher Dimensions , 2010 .

[69]  S. Smirnov,et al.  Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.

[70]  V. Vargas,et al.  KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.

[71]  S. Sheffield,et al.  Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.

[72]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[73]  N. Curien,et al.  The Brownian Plane , 2012, 1204.5921.

[74]  Exploration trees and conformal loop ensembles , 2006, math/0609167.

[75]  R. Teodorescu,et al.  Shocks and finite-time singularities in Hele-Shaw flow , 2008, 0811.0635.

[76]  L. Sander Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .

[77]  J. L. Gall,et al.  The topological structure of scaling limits of large planar maps , 2006, math/0607567.

[78]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[79]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[80]  Gregory F. Lawler,et al.  Conformally Invariant Processes in the Plane , 2005 .

[81]  P. Meakin,et al.  The formation of surfaces by diffusion limited annihilation , 1986 .

[82]  Nicolas Curien,et al.  Uniform infinite planar quadrangulations with a boundary , 2012, Random Struct. Algorithms.

[83]  THE KARDAR-PARISI-ZHANG,et al.  The Kardar-Parisi-Zhang Equation and Universality Class , 2011 .

[84]  M B Hastings Exact multifractal spectra for arbitrary laplacian random walks. , 2002, Physical review letters.

[85]  Omer Angel Growth and percolation on the uniform infinite planar triangulation , 2002 .

[86]  S. Rohde,et al.  Some remarks on Laplacian growth , 2005 .

[87]  Asaf Nachmias,et al.  Recurrence of planar graph limits , 2012, 1206.0707.

[88]  KPZ relation does not hold for the level lines and the SLE$_\kappa$ flow lines of the Gaussian free field , 2013 .

[89]  James T. Gill,et al.  On the Riemann surface type of Random Planar Maps , 2011, 1101.1320.

[90]  Alexandre Gaudilliere,et al.  Sublogarithmic fluctuations for internal DLA , 2013 .

[91]  R. Mullin,et al.  On the Enumeration of Tree-Rooted Maps , 1967, Canadian Journal of Mathematics.

[92]  J. Norris,et al.  Hastings–Levitov Aggregation in the Small-Particle Limit , 2011, 1106.3546.

[93]  M. Hastings,et al.  Fractal to nonfractal phase transition in the dielectric breakdown model. , 2001, Physical review letters.

[94]  J. T. Cox,et al.  Some Limit Theorems for Percolation Processes with Necessary and Sufficient Conditions , 1981 .

[95]  Peter W. Jones,et al.  Removability theorems for Sobolev functions and quasiconformal maps , 2000 .

[96]  A. Polyakov From Quarks to Strings , 2008, 0812.0183.

[97]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[98]  Alexandre Gaudilliere,et al.  From logarithmic to subdiffusive polynomial fluctuations for internal DLA and related growth models , 2010, 1009.2838.

[99]  Joan R. Lind Hölder regularity of the SLE trace , 2008 .

[100]  Russell Lyons,et al.  Uniform spanning forests , 2001 .

[101]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[102]  Maritan,et al.  Invasion percolation and Eden growth: Geometry and universality. , 1996, Physical review letters.

[103]  Nicolas Curien,et al.  A view from infinity of the uniform infinite planar quadrangulation , 2012, 1201.1052.

[104]  J. L. Gall,et al.  Geodesics in large planar maps and in the Brownian map , 2008, 0804.3012.

[105]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[106]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.