Quantum Loewner Evolution
暂无分享,去创建一个
[1] I. Benjamini,et al. Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.
[2] I. Benjamini,et al. KPZ in One Dimensional Random Geometry of Multiplicative Cascades , 2008, 0806.1347.
[3] Lionel Levine,et al. Internal DLA and the Gaussian free field , 2011, 1101.0596.
[4] Scott Sheffield,et al. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. , 2009, Physical review letters.
[5] David Bruce Wilson,et al. Generating random spanning trees more quickly than the cover time , 1996, STOC '96.
[6] W. Werner,et al. Conformal loop ensembles: the Markovian characterization and the loop-soup construction , 2010, 1006.2374.
[7] Omer Angel,et al. Uniform Infinite Planar Triangulations , 2002 .
[8] Philippe Di Francesco,et al. Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..
[9] L. Pietronero,et al. The Laplacian random walk , 1986 .
[10] Murray T. Batchelor,et al. Limits to Eden growth in two and three dimensions , 1991 .
[11] M. B. Hastings,et al. Laplacian growth as one-dimensional turbulence , 1998 .
[12] Y. Watabiki. Analytic Study of Fractal Structure of Quantized Surface in Two-Dimensional Quantum Gravity (Quantum Gravity(Proceedings of the 1992 YITP Workshop)) , 1993 .
[13] Quantum Geometry of Fermionic Strings , 1981 .
[14] L. Carleson,et al. Aggregation in the Plane and Loewner's Equation , 2001 .
[15] Xia Hua. Thick Points of the Gaussian Free Field , 2009 .
[16] Jason Miller. Universality for SLE(4) , 2010, 1010.1356.
[17] O. Schramm,et al. A contour line of the continuum Gaussian free field , 2010, 1008.2447.
[18] D. Griffeath,et al. Internal Diffusion Limited Aggregation , 1992 .
[19] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[20] Vincent Vargas,et al. Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.
[21] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[22] V. Vargas,et al. Renormalization of Critical Gaussian Multiplicative Chaos and KPZ formula , 2012, 1212.0529.
[23] O. Schramm,et al. Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.
[24] Morphology of Laplacian random walks , 2010 .
[25] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[26] Gilles Schaeer,et al. Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .
[27] Lev N. Shchur,et al. Morphological diagram of diffusion driven aggregate growth in plane: Competition of anisotropy and adhesion , 2011, Comput. Phys. Commun..
[28] B. Gustafsson,et al. Conformal and Potential Analysis in Hele-Shaw Cells , 2006 .
[29] Fredrik Johansson,et al. Scaling limits of anisotropic Hastings–Levitov clusters , 2009, 0908.0086.
[30] Joachim Mathiesen,et al. The universality class of diffusion-limited aggregation and viscous fingering , 2005 .
[31] S. C. Ferreira,et al. Universal fluctuations in radial growth models belonging to the KPZ universality class , 2011, 1109.4901.
[32] W. T. Tutte. On the enumeration of planar maps , 1968 .
[33] Scott Sheffield,et al. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.
[34] Alexander M. Polyakov,et al. Fractal Structure of 2D Quantum Gravity , 1988 .
[35] Olivier Bernardi,et al. Bijective Counting of Tree-Rooted Maps and Shuffles of Parenthesis Systems , 2006, Electron. J. Comb..
[36] S. Sheffield,et al. Schramm-Loewner evolution and Liouville quantum gravity. , 2010, Physical review letters.
[37] S. Smirnov,et al. Harmonic Measure and SLE , 2008, 0801.1792.
[38] S. Sheffield. Quantum gravity and inventory accumulation , 2011, 1108.2241.
[39] J. F. Le Gall,et al. Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .
[40] Nam-Gyu Kang. Boundary behavior of SLE , 2006 .
[41] J. Quastel,et al. Renormalization Fixed Point of the KPZ Universality Class , 2011, 1103.3422.
[42] C. Newman,et al. Two-Dimensional Critical Percolation: The Full Scaling Limit , 2006, math/0605035.
[43] Dietrich Stauffer,et al. Surface structure and anisotropy of Eden clusters , 1985 .
[44] Wendelin Werner. Random planar curves and Schramm-Loewner evolutions , 2003 .
[45] Julien Dubédat. SLE and the free field: partition functions and couplings , 2007, 0712.3018.
[46] David B. Wilson,et al. SLE coordinate changes , 2005 .
[47] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[48] Meakin. Universality, nonuniversality, and the effects of anisotropy on diffusion-limited aggregation. , 1986, Physical review. A, General physics.
[49] O. Schramm,et al. Conformal restriction: The chordal case , 2002, math/0209343.
[50] L. Pietronero,et al. Fractal Dimension of Dielectric Breakdown , 1984 .
[51] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .
[52] Joachim Mathiesen,et al. Dimensions, maximal growth sites, and optimization in the dielectric breakdown model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[53] M. Eden. A Two-dimensional Growth Process , 1961 .
[54] Oded Schramm,et al. Harmonic explorer and its convergence to SLE4 , 2003 .
[55] Harry Kesten,et al. Hitting probabilities of random walks on Zd , 1987 .
[56] C. Garban. Quantum gravity and the KPZ formula , 2012, 1206.0212.
[57] G. Lawler. The Laplacian-$b$ random walk and the Schramm-Loewner evolution , 2006 .
[58] Abdelkader Mokkadem,et al. Limit of normalized quadrangulations: The Brownian map , 2006 .
[59] J. Hammersley,et al. First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theory , 1965 .
[60] Lionel Levine,et al. Logarithmic fluctuations for internal DLA , 2010, 1010.2483.
[61] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[62] Thomas C. Halsey,et al. Diffusion‐Limited Aggregation: A Model for Pattern Formation , 2000 .
[63] W. Werner,et al. On Conformally Invariant CLE Explorations , 2011, 1112.1211.
[64] Conformally invariant scaling limits: an overview and a collection of problems , 2006, math/0602151.
[65] R. Cori,et al. Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.
[66] Jean-Franccois Le Gall,et al. Uniqueness and universality of the Brownian map , 2011, 1105.4842.
[67] S. Sheffield,et al. Imaginary geometry I: interacting SLEs , 2012, 1201.1496.
[68] Lionel Levine,et al. Internal DLA in Higher Dimensions , 2010 .
[69] S. Smirnov,et al. Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.
[70] V. Vargas,et al. KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.
[71] S. Sheffield,et al. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.
[72] Zhang,et al. Dynamic scaling of growing interfaces. , 1986, Physical review letters.
[73] N. Curien,et al. The Brownian Plane , 2012, 1204.5921.
[74] Exploration trees and conformal loop ensembles , 2006, math/0609167.
[75] R. Teodorescu,et al. Shocks and finite-time singularities in Hele-Shaw flow , 2008, 0811.0635.
[76] L. Sander. Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .
[77] J. L. Gall,et al. The topological structure of scaling limits of large planar maps , 2006, math/0607567.
[78] A. Polyakov. Quantum Geometry of Bosonic Strings , 1981 .
[79] Wendelin Werner,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .
[80] Gregory F. Lawler,et al. Conformally Invariant Processes in the Plane , 2005 .
[81] P. Meakin,et al. The formation of surfaces by diffusion limited annihilation , 1986 .
[82] Nicolas Curien,et al. Uniform infinite planar quadrangulations with a boundary , 2012, Random Struct. Algorithms.
[83] THE KARDAR-PARISI-ZHANG,et al. The Kardar-Parisi-Zhang Equation and Universality Class , 2011 .
[84] M B Hastings. Exact multifractal spectra for arbitrary laplacian random walks. , 2002, Physical review letters.
[85] Omer Angel. Growth and percolation on the uniform infinite planar triangulation , 2002 .
[86] S. Rohde,et al. Some remarks on Laplacian growth , 2005 .
[87] Asaf Nachmias,et al. Recurrence of planar graph limits , 2012, 1206.0707.
[88] KPZ relation does not hold for the level lines and the SLE$_\kappa$ flow lines of the Gaussian free field , 2013 .
[89] James T. Gill,et al. On the Riemann surface type of Random Planar Maps , 2011, 1101.1320.
[90] Alexandre Gaudilliere,et al. Sublogarithmic fluctuations for internal DLA , 2013 .
[91] R. Mullin,et al. On the Enumeration of Tree-Rooted Maps , 1967, Canadian Journal of Mathematics.
[92] J. Norris,et al. Hastings–Levitov Aggregation in the Small-Particle Limit , 2011, 1106.3546.
[93] M. Hastings,et al. Fractal to nonfractal phase transition in the dielectric breakdown model. , 2001, Physical review letters.
[94] J. T. Cox,et al. Some Limit Theorems for Percolation Processes with Necessary and Sufficient Conditions , 1981 .
[95] Peter W. Jones,et al. Removability theorems for Sobolev functions and quasiconformal maps , 2000 .
[96] A. Polyakov. From Quarks to Strings , 2008, 0812.0183.
[97] Philippe Chassaing,et al. Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.
[98] Alexandre Gaudilliere,et al. From logarithmic to subdiffusive polynomial fluctuations for internal DLA and related growth models , 2010, 1009.2838.
[99] Joan R. Lind. Hölder regularity of the SLE trace , 2008 .
[100] Russell Lyons,et al. Uniform spanning forests , 2001 .
[101] Gr'egory Miermont,et al. The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.
[102] Maritan,et al. Invasion percolation and Eden growth: Geometry and universality. , 1996, Physical review letters.
[103] Nicolas Curien,et al. A view from infinity of the uniform infinite planar quadrangulation , 2012, 1201.1052.
[104] J. L. Gall,et al. Geodesics in large planar maps and in the Brownian map , 2008, 0804.3012.
[105] Oded Schramm,et al. Basic properties of SLE , 2001 .
[106] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.