Robust calibration

This article presents robust methods for the random calibration problem. Many calibration techniques are based on regression models or measurement-error models. Prediction from such models is known to be highly nonrobust, and robust techniques should prove quite valuable. Robustcalibration procedures are procedures that work well even if there is some contamination in the data or if the model assumptions used in deriving the procedure are not quite true for the given data. Several approaches to robustifying calibration are compared theoretically, by Monte Carlo simulation, and on real data.

[1]  G. Box Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification , 1954 .

[2]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[3]  R. G. Krutchkoff,et al.  Classical and Inverse Regression Methods of Calibration , 1967 .

[4]  M. R. Mickey,et al.  Estimation of Error Rates in Discriminant Analysis , 1968 .

[5]  J. Jurecková,et al.  Nonparametric Estimate of Regression Coefficients , 1971 .

[6]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[7]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[8]  Svante Wold,et al.  Pattern recognition by means of disjoint principal components models , 1976, Pattern Recognit..

[9]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[10]  N. Campbell Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .

[11]  L. Gleser Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results , 1981 .

[12]  V. Yohai,et al.  Asymptotic behavior of general M-estimates for regression and scale with random carriers , 1981 .

[13]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[14]  Takamitsu Sawa,et al.  Exact and Approximate Distributions of the Maximum Likelihood Estimator of a Slope Coefficient , 1982 .

[15]  R. Welsch,et al.  Efficient Bounded-Influence Regression Estimation , 1982 .

[16]  W. Krzanowski,et al.  Cross-Validatory Choice of the Number of Components From a Principal Component Analysis , 1982 .

[17]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[18]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[19]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[20]  T. Fearn,et al.  Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs , 1984 .

[21]  P. Rousseeuw,et al.  Change-of-variance sensitivities in regression analysis , 1985 .

[22]  Guoying Li,et al.  Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo , 1985 .

[23]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[24]  F. Hampel The Breakdown Points of the Mean Combined With Some Rejection Rules , 1985 .

[25]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[26]  Roger Koenker,et al.  L-Estimation for Linear Models , 1987 .

[27]  P. L. Davies,et al.  Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .

[28]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[29]  John Van Ness,et al.  A routine for converting regression algorithms into corresponding orthogonal regression algorithms , 1988, TOMS.

[30]  Richard A. Becker,et al.  The New S Language , 1989 .

[31]  John W. Van Ness,et al.  Standard and robust orthogonal regression , 1989 .

[32]  E. V. Thomas,et al.  Outlier detection in multivariate calibration , 1989 .

[33]  R. Zamar Robust estimation in the errors-in-variables model , 1989 .

[34]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[35]  Wayne A. Fuller,et al.  Statistical analysis of measurement error models and applications : proceedings of the AMS-IMS-SIAM Joint Summer Research conference held June 10-16, 1989, with support from the National Science Foundation and the U.S. Army Research Office , 1990 .

[36]  T. Hettmansperger,et al.  Robust Bounded Influence Tests in Linear Models , 1990 .

[37]  H. P. Lopuhaä Multivariate τ‐estimators for location and scatter , 1991 .

[38]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[39]  Christine Osborne,et al.  Statistical Calibration: A Review , 1991 .

[40]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[41]  Ruben H. Zamar,et al.  Bias Robust Estimation in Orthogonal Regression , 1992 .

[42]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[43]  J. V. Ness,et al.  Generalized $M$-Estimators for Errors-in-Variables Regression , 1992 .

[44]  D. G. Simpson,et al.  On One-Step GM Estimates and Stability of Inferences in Linear Regression , 1992 .

[45]  An efficient Fre´chet differentiable high breakdown multivariate location and dispersion estimator , 1992 .

[46]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[47]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[48]  C. W. Coakley,et al.  A Bounded Influence, High Breakdown, Efficient Regression Estimator , 1993 .

[49]  L. Ammann Robust Singular Value Decompositions: A New Approach to Projection Pursuit , 1993 .

[50]  David M. Rocke,et al.  Computable Robust Estimation of Multivariate Location and Shape in High Dimension Using Compound Estimators , 1994 .

[51]  Elvezio Ronchetti,et al.  A Robust Version of Mallows's C P , 1994 .

[52]  David E. Tyler Finite Sample Breakdown Points of Projection Based Multivariate Location and Scatter Statistics , 1994 .

[53]  Xuming He,et al.  Bounded Influence and High Breakdown Point Testing Procedures in Linear Models , 1994 .

[54]  Victor J. Yohai,et al.  The Behavior of the Stahel-Donoho Robust Multivariate Estimator , 1995 .

[55]  Desire L. Massart,et al.  ROBUST PRINCIPAL COMPONENTS REGRESSION AS A DETECTION TOOL FOR OUTLIERS , 1995 .

[56]  F. X. Rius,et al.  Univariate regression models with errors in both axes , 1995 .

[57]  Christos P. Kitsos,et al.  Robust Linear Calibration , 1995 .

[58]  David J. Cummins,et al.  Iteratively reweighted partial least squares: A performance analysis by monte carlo simulation , 1995 .

[59]  David E. Tyler,et al.  Constrained M-estimation for multivariate location and scatter , 1996 .

[60]  Christophe Croux,et al.  A Fast Algorithm for Robust Principal Components Based on Projection Pursuit , 1996 .

[61]  David E. Tyler,et al.  Constrained M-Estimation for Regression , 1996 .

[62]  Mia Hubert,et al.  Robust regression with both continuous and binary regressors , 1997 .

[63]  S. D. Jong,et al.  The kernel PCA algorithms for wide data. Part I: Theory and algorithms , 1997 .

[64]  Mia Hubert,et al.  Recent developments in PROGRESS , 1997 .

[65]  Elvezio Ronchetti,et al.  Robust Linear Model Selection by Cross-Validation , 1997 .

[66]  Douglas M. Hawkins,et al.  High-Breakdown Linear Discriminant Analysis , 1997 .

[67]  Desire L. Massart,et al.  Kernel-PCA algorithms for wide data Part II: Fast cross-validation and application in classification of NIR data , 1997 .

[68]  C. Croux,et al.  Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator , 1999 .

[69]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[70]  Victor J. Yohai,et al.  Functional stability of one-step GM-estimators in approximately linear regression , 1998 .