On the Harish-Chandra Homomorphism for Quantum Superalgebras

In this paper, we introduce the Harish-Chandra homomorphism for the quantum superalgebra Uq(g) associated with a simple basic Lie superalgebra g and give an explicit description of its image. We use it to prove that the center of Uq(g) is isomorphic to a subring of the ring J(g) of exponential super-invariants in the sense of Sergeev and Veselov, establishing a Harish-Chandra type theorem for Uq(g). As a byproduct, we obtain a basis of the center of Uq(g) with the aid of quasi-R-matrix. MSC(2020): 16U70, 17B37, 20G42.

[1]  Rui-bin Zhang Finite-dimensional representations of Uq(osp(1/2n)) and its connection with quantum so(2n+1) , 1992 .

[2]  A. Bracken,et al.  Generalized Gelfand invariants of quantum groups , 1991 .

[3]  Saber Ahmed,et al.  Quantized enveloping superalgebra of type P , 2021 .

[4]  S. Naito ON THE HARISH-CHANDRA HOMOMORPHISM FOR GENERALIZED KAC-MOODY ALGEBRAS , 2001 .

[5]  Rosso’s form and quantized Kac Moody algebras , 1996 .

[6]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[7]  M. Rosso Analogues de la forme de Killing et du théorème d'Harish-Chandra pour les groupes quantiques , 1990 .

[8]  A. Bracken,et al.  Generalized Gel'fand invariants and characteristic identities for quantum groups , 1991 .

[9]  Etingof–Kazhdan quantization of Lie superbialgebras , 2004, math/0409563.

[10]  Zhaobing Fan,et al.  Drinfeld double of deformed quantum algebras , 2019, Journal of Algebra.

[11]  H. Yamane Universal R-matrices for quantum groups associated to simple Lie superalgebras , 1991 .

[12]  A. Bracken,et al.  Quantum group invariants and link polynomials , 1991 .

[13]  Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n) , 2002, math/0203011.

[14]  The invariant polynomials on simple Lie superalgebras , 1998, math/9810111.

[15]  Victor G. Kac,et al.  Representations of classical lie superalgebras , 1978 .

[16]  V. Kac Laplace operators of infinite-dimensional Lie algebras and theta functions. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Harish-Chandra On some applications of the universal enveloping algebra of a semisimple Lie algebra , 1951 .

[18]  M. Rosso,et al.  Multi-parameter quantum groups and quantum shuffles, (I) , 2008, 0811.0129.

[19]  Rui-bin Zhang,et al.  Serre presentations of Lie superalgebras , 2011, 1101.3114.

[20]  A. Veselov,et al.  Grothendieck rings of basic classical Lie superalgebras , 2007, 0704.2250.

[21]  P. Etingof,et al.  Lectures on Quantum Groups , 2001 .

[22]  V. Tolstoy,et al.  Twisting of quantum (super)algebras , 1994 .

[23]  V. Kac,et al.  Representations of quantum groups at roots of 1 , 1992 .

[24]  J. Zhou,et al.  On ω-Lie superalgebras , 2017, Journal of Algebra and Its Applications.

[25]  H. Yamane,et al.  Classification of Finite Dimensional Irreducible Representations of Generalized Quantum Groups via Weyl Groupoids , 2011, 1105.0160.

[26]  T. Tanisaki KILLING FORMS, HARISH-CHANDRA ISOMORPHISMS, AND UNIVERSAL R-MATRICES FOR QUANTUM ALGEBRAS , 1992 .

[27]  Jae-Hoon Kwon Super duality and crystal bases for quantum ortho-symplectic superalgebras II , 2014, 1402.0152.

[28]  Yinhuo Zhang,et al.  On the center of the quantized enveloping algebra of a simple Lie algebra , 2016, 1607.00802.

[29]  G. Lehrer,et al.  First fundamental theorems of invariant theory for quantum supergroups , 2019, European Journal of Mathematics.

[30]  U. D. Mathématiques On the center of quantized enveloping algebras , 2005 .

[31]  H. Yamane Quantized Enveloping Algebras Associated with Simple Lie Superalgebras and Their Universal R -matrices , 1994 .

[32]  I. Musson Lie Superalgebras and Enveloping Algebras , 2012 .

[33]  Eigenvalues of Casimir invariants for Uq[osp(m∣n)] , 2005, math/0506110.

[34]  Jae-Hoon Kwon Super duality and crystal bases for quantum ortho-symplectic superalgebras II , 2013, 1402.0152.

[35]  H. Yamane Errata to On defining relations of affine lie superalgebras and affine quantized universal enveloping superalgebras , 2001 .

[36]  P. Podles,et al.  Introduction to Quantum Groups , 1998 .

[37]  Yanmin Dai,et al.  Explicit generators and relations for the centre of the quantum group , 2021, 2102.07407.

[38]  G. Olshanski Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra , 1992 .

[39]  Some remarks on quantized Lie superalgebras of classical type , 2005, math/0508440.

[40]  Roger W. Carter,et al.  Lie Algebras of Finite and Affine Type , 2005 .

[41]  Ruibin Zhang,et al.  Finite dimensional irreducible representations of the quantum supergroup Uq(gl(m/n)) , 1993 .

[42]  H. Yamane,et al.  Centers of Generalized Quantum Groups , 2013, 1309.1651.

[43]  A. Bracken,et al.  Quantum double construction for graded Hopf algebras , 1993, Bulletin of the Australian Mathematical Society.

[44]  A. Bracken,et al.  Solutions of the graded classical Yang-Baxter equation and integrable models , 1991 .

[45]  Harish-Chandra isomorphisms for quantum algebras , 1990 .

[46]  A. Sergeev The centre of enveloping algebra for Lie superalgebra Q(n, ℂ) , 1983 .

[47]  Shun-Jen Cheng,et al.  Dualities and Representations of Lie Superalgebras , 2012 .

[48]  Rui-bin Zhang Universal L operator and invariants of the quantum supergroup Uq(gl(m/n)) , 1992 .