On the Harish-Chandra Homomorphism for Quantum Superalgebras
暂无分享,去创建一个
Yu Ye | Yongjie Wang | Yang Luo | Yu Ye | Yang Luo | Yongjie Wang
[1] Rui-bin Zhang. Finite-dimensional representations of Uq(osp(1/2n)) and its connection with quantum so(2n+1) , 1992 .
[2] A. Bracken,et al. Generalized Gelfand invariants of quantum groups , 1991 .
[3] Saber Ahmed,et al. Quantized enveloping superalgebra of type P , 2021 .
[4] S. Naito. ON THE HARISH-CHANDRA HOMOMORPHISM FOR GENERALIZED KAC-MOODY ALGEBRAS , 2001 .
[5] Rosso’s form and quantized Kac Moody algebras , 1996 .
[6] P. Alam,et al. H , 1887, High Explosives, Propellants, Pyrotechnics.
[7] M. Rosso. Analogues de la forme de Killing et du théorème d'Harish-Chandra pour les groupes quantiques , 1990 .
[8] A. Bracken,et al. Generalized Gel'fand invariants and characteristic identities for quantum groups , 1991 .
[9] Etingof–Kazhdan quantization of Lie superbialgebras , 2004, math/0409563.
[10] Zhaobing Fan,et al. Drinfeld double of deformed quantum algebras , 2019, Journal of Algebra.
[11] H. Yamane. Universal R-matrices for quantum groups associated to simple Lie superalgebras , 1991 .
[12] A. Bracken,et al. Quantum group invariants and link polynomials , 1991 .
[13] Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n) , 2002, math/0203011.
[14] The invariant polynomials on simple Lie superalgebras , 1998, math/9810111.
[15] Victor G. Kac,et al. Representations of classical lie superalgebras , 1978 .
[16] V. Kac. Laplace operators of infinite-dimensional Lie algebras and theta functions. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[17] Harish-Chandra. On some applications of the universal enveloping algebra of a semisimple Lie algebra , 1951 .
[18] M. Rosso,et al. Multi-parameter quantum groups and quantum shuffles, (I) , 2008, 0811.0129.
[19] Rui-bin Zhang,et al. Serre presentations of Lie superalgebras , 2011, 1101.3114.
[20] A. Veselov,et al. Grothendieck rings of basic classical Lie superalgebras , 2007, 0704.2250.
[21] P. Etingof,et al. Lectures on Quantum Groups , 2001 .
[22] V. Tolstoy,et al. Twisting of quantum (super)algebras , 1994 .
[23] V. Kac,et al. Representations of quantum groups at roots of 1 , 1992 .
[24] J. Zhou,et al. On ω-Lie superalgebras , 2017, Journal of Algebra and Its Applications.
[25] H. Yamane,et al. Classification of Finite Dimensional Irreducible Representations of Generalized Quantum Groups via Weyl Groupoids , 2011, 1105.0160.
[26] T. Tanisaki. KILLING FORMS, HARISH-CHANDRA ISOMORPHISMS, AND UNIVERSAL R-MATRICES FOR QUANTUM ALGEBRAS , 1992 .
[27] Jae-Hoon Kwon. Super duality and crystal bases for quantum ortho-symplectic superalgebras II , 2014, 1402.0152.
[28] Yinhuo Zhang,et al. On the center of the quantized enveloping algebra of a simple Lie algebra , 2016, 1607.00802.
[29] G. Lehrer,et al. First fundamental theorems of invariant theory for quantum supergroups , 2019, European Journal of Mathematics.
[30] U. D. Mathématiques. On the center of quantized enveloping algebras , 2005 .
[31] H. Yamane. Quantized Enveloping Algebras Associated with Simple Lie Superalgebras and Their Universal R -matrices , 1994 .
[32] I. Musson. Lie Superalgebras and Enveloping Algebras , 2012 .
[33] Eigenvalues of Casimir invariants for Uq[osp(m∣n)] , 2005, math/0506110.
[34] Jae-Hoon Kwon. Super duality and crystal bases for quantum ortho-symplectic superalgebras II , 2013, 1402.0152.
[35] H. Yamane. Errata to On defining relations of affine lie superalgebras and affine quantized universal enveloping superalgebras , 2001 .
[36] P. Podles,et al. Introduction to Quantum Groups , 1998 .
[37] Yanmin Dai,et al. Explicit generators and relations for the centre of the quantum group , 2021, 2102.07407.
[38] G. Olshanski. Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra , 1992 .
[39] Some remarks on quantized Lie superalgebras of classical type , 2005, math/0508440.
[40] Roger W. Carter,et al. Lie Algebras of Finite and Affine Type , 2005 .
[41] Ruibin Zhang,et al. Finite dimensional irreducible representations of the quantum supergroup Uq(gl(m/n)) , 1993 .
[42] H. Yamane,et al. Centers of Generalized Quantum Groups , 2013, 1309.1651.
[43] A. Bracken,et al. Quantum double construction for graded Hopf algebras , 1993, Bulletin of the Australian Mathematical Society.
[44] A. Bracken,et al. Solutions of the graded classical Yang-Baxter equation and integrable models , 1991 .
[45] Harish-Chandra isomorphisms for quantum algebras , 1990 .
[46] A. Sergeev. The centre of enveloping algebra for Lie superalgebra Q(n, ℂ) , 1983 .
[47] Shun-Jen Cheng,et al. Dualities and Representations of Lie Superalgebras , 2012 .
[48] Rui-bin Zhang. Universal L operator and invariants of the quantum supergroup Uq(gl(m/n)) , 1992 .