Crystallographic Characteristics of Grain Boundaries in Dense Yttria‐Stabilized Zirconia

Grain-boundary plane, misorientation angle, grain size, and grain-boundary energy distributions were quantified using electron backscatter diffraction data for dense polycrystalline yttria-stabilized zirconia, to understand interfacial crystallography in solid oxide fuel cells. Tape-cast samples were sintered at 1450°C for 4 h and annealed for at least 100 h between 800°C and 1650°C. Distributions obtained from both three-dimensional (3D) reconstructions and stereological analyses of 2D sections demonstrated that the (100) boundary planes {(111)} have relative areas larger {smaller} than expected in a random distribution, and that the boundary plane distribution is inversely correlated to the boundary energy distribution.

[1]  G. Rohrer,et al.  Effect of Segregating Impurities on the Grain‐Boundary Character Distribution of Magnesium Oxide , 2009 .

[2]  Shen J. Dillon,et al.  Relative grain boundary area and energy distributions in nickel , 2009 .

[3]  Richard Catlow,et al.  Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia , 2009 .

[4]  S. Dillon,et al.  Characterization of the Grain-Boundary Character and Energy Distributions of Yttria Using Automated Serial Sectioning and EBSD in the FIB , 2009 .

[5]  E. Wachsman,et al.  Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs , 2009 .

[6]  Konstantin Mischaikow,et al.  Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity , 2009, Microscopy and Microanalysis.

[7]  S. Dillon,et al.  Three‐Dimensional FIB‐OIM of Ceramic Materials , 2008 .

[8]  S. Jiang,et al.  Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review , 2008 .

[9]  Manfred Martin,et al.  Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries. , 2008, Physical chemistry chemical physics : PCCP.

[10]  Yuping Zeng,et al.  Properties of Microstructure‐Controllable Porous Yttria‐Stabilized Ziroconia Ceramics Fabricated by Freeze Casting , 2008 .

[11]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[12]  A. Rollett,et al.  Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction , 2007 .

[13]  G. Rohrer,et al.  The origin of photochemical anisotropy in SrTiO3 , 2007 .

[14]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[15]  A. Kuprat,et al.  Effect of anisotropic grain boundary properties on grain boundary plane distributions during grain growth , 2005 .

[16]  G. Rohrer INFLUENCE OF INTERFACE ANISOTROPY ON GRAIN GROWTH AND COARSENING , 2005 .

[17]  Y. Ikuhara,et al.  Oxygen diffusion blocking of single grain boundary in yttria-doped zirconia bicrystals , 2005 .

[18]  G. Rohrer,et al.  Shape Evolution of SrTiO3 Crystals During Coarsening in a Titania‐Rich Liquid , 2005 .

[19]  Nguyen Q. Minh,et al.  Solid Oxide Fuel Cells: Technology Status , 2005 .

[20]  D. Saylor,et al.  Distribution and Energies of Grain Boundaries in Magnesia as a Function of Five Degrees of Freedom , 2004 .

[21]  A. Rollett,et al.  Crystallographic Distribution of Internal Interfaces in Spinel Polycrystals , 2004 .

[22]  M. Bernasconi,et al.  Ab initio study of yttria-stabilized cubic zirconia surfaces , 2004 .

[23]  A. Rollett,et al.  Habits of Grains in Dense Polycrystalline Solids , 2004 .

[24]  D. Saylor,et al.  Distribution of Grain Boundaries in SrTiO3 as a Function of Five Macroscopic Parameters , 2004 .

[25]  A. Rollett,et al.  The distribution of internal interfaces in polycrystals , 2004 .

[26]  Juergen Fleig Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance , 2003 .

[27]  D. Saylor,et al.  Surface Energy Anisotropy of SrTiO3 at 1400°C in Air , 2003 .

[28]  D. Saylor,et al.  The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters , 2003 .

[29]  G. Rohrer,et al.  Structure Se nsitivity of Photochemical Oxidation and Reduction Reactions on SrTiO3 Surfaces , 2003 .

[30]  R. Mark Ormerod Solid oxide fuel cells. , 2003, Chemical Society reviews.

[31]  J. Vohs,et al.  Synthesis of Highly Porous Yttria‐Stabilized Zirconia by Tape‐Casting Methods , 2003 .

[32]  Elizabeth A. Holm,et al.  Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth , 2002 .

[33]  R. Larsen,et al.  Extracting twins from orientation imaging microscopy scan data , 2002, Journal of microscopy.

[34]  M. Miodownik,et al.  On misorientation distribution evolution during anisotropic grain growth , 2001 .

[35]  G. Rohrer Structure and Bonding in Crystalline Materials: Index , 2001 .

[36]  A. Morawiec Method to calculate the grain boundary energy distribution over the space of macroscopic boundary parameters from the geometry of triple junctions , 2000 .

[37]  D. Saylor,et al.  Misorientation Dependence of the Grain Boundary Energy in Magnesia , 2000 .

[38]  Dominic F. Lee,et al.  Low angle grain boundary transport in YBa2Cu3O7−δ coated conductors , 2000 .

[39]  C. Catlow,et al.  Comparison of the bulk and surface properties of ceria and zirconia by ab initio investigations , 1999 .

[40]  G. Palumbo,et al.  On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering , 1999 .

[41]  G. Rohrer,et al.  ANISOTROPIC PHOTOCHEMICAL REACTIVITY OF BULK TIO2 CRYSTALS , 1998 .

[42]  P. Lin,et al.  Applications for grain boundary engineered materials , 1998 .

[43]  John D. Budai,et al.  Conductors with controlled grain boundaries: An approach to the next generation, high temperature superconducting wire , 1997 .

[44]  T. Sakuma,et al.  Evolution of Microstructure and Grain Growth in ZrO2–Y2O3 Alloys , 1989 .

[45]  A. H. King,et al.  The misorientation depedence of diffusion induced grain boundary migration , 1986 .

[46]  J. Mackenzie,et al.  SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES , 1958 .

[47]  J. Mackenzie,et al.  SOME STATISTICS ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES , 1957 .

[48]  H. Miller Influences of processing and composition on the grain boundary character distribution , 2009 .

[49]  S. Dillon,et al.  Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth , 2009 .

[50]  G. Rohrer,et al.  Structure Sensitivity of Photochemical Oxidation and Reduction Reactions on SrTiO 3 Surfaces , 2003 .

[51]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .