An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications

To design a transportation sensor network, the decision maker needs to determine what sensor investments should be made, as well as when, how, where, and with what technologies. This paper focuses on locating a limited set of traffic counting stations and automatic vehicle identification (AVI) readers in a network, so as to maximize the expected information gain for the subsequent origin-destination (OD) demand estimation problem. The proposed sensor design model explicitly takes into account several important error sources in traffic OD demand estimation, such as the uncertainty in historical demand information, sensor measurement errors, as well as approximation errors associated with link proportions. Based on a mean square measure, this paper derives analytical formulations to describe estimation variance propagation for a set of linear measurement equations. A scenario-based (SB) stochastic optimization procedure and a beam search algorithm are developed to find suboptimal point and point-to-point sensor locations subject to budget constraints. This paper also provides a number of illustrative examples to demonstrate the effectiveness of the proposed methodology.

[1]  F. Lewis Optimal Estimation: With an Introduction to Stochastic Control Theory , 1986 .

[2]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Haris N. Koutsopoulos,et al.  Incorporating Automated Vehicle Identification Data into Origin-Destination Estimation , 2004 .

[4]  Feng Zhao,et al.  Information-driven dynamic sensor collaboration , 2002, IEEE Signal Process. Mag..

[5]  Laurence R. Rilett,et al.  Real‐Time OD Estimation Using Automatic Vehicle Identification and Traffic Count Data , 2002 .

[6]  William H. K. Lam,et al.  EVALUATION OF COUNT LOCATION SELECTION METHODS FOR ESTIMATION OF O-D MATRICES , 1998 .

[7]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[8]  Panos D. Prevedouros,et al.  Derivation of Origin-Destination Distributions from Traffic Counts: Implications for Freeway Simulation , 2006 .

[9]  Jitamitra Desai,et al.  A discrete optimization approach for locating Automatic Vehicle Identification readers for the provision of roadway travel times , 2006 .

[10]  Michael G.H. Bell,et al.  The optimisation of traffic count locations in road networks , 2006 .

[11]  Hani S. Mahmassani,et al.  ESTIMATION OF DYNAMIC ORIGIN-DESTINATION FLOWS FROM SENSOR DATA USING BI-LEVEL OPTIMIZATION METHOD , 2001 .

[12]  Giuseppe Confessore,et al.  A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates , 2001, Transp. Sci..

[13]  John R. Rice,et al.  Numerical methods, software, and analysis , 1983 .

[14]  Sang Nguyen,et al.  A unified framework for estimating or updating origin/destination matrices from traffic counts , 1988 .

[15]  M.G.H. Bell Variances and covariances for origin-destination flows when estimated by log-linear models , 1985 .

[16]  Hai Yang Heuristic algorithms for the bilevel origin-destination matrix estimation problem , 1995 .

[17]  Michael Bierlaire,et al.  The total demand scale: a new measure of quality for static and dynamic origin–destination trip tables , 2002 .

[18]  Jon Lee Constrained Maximum-Entropy Sampling , 1998, Oper. Res..

[19]  Hani S. Mahmassani,et al.  Dynamic origin-destination demand estimation using automatic vehicle identification data , 2006, IEEE Transactions on Intelligent Transportation Systems.

[20]  DenzlerJoachim,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002 .

[21]  Eugene S. McVey,et al.  Multi-process constrained estimation , 1991, IEEE Trans. Syst. Man Cybern..

[22]  Kenneth J. Hintz,et al.  A measure of the information gain attributable to cueing , 1991, IEEE Trans. Syst. Man Cybern..

[23]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[24]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[25]  Anthony Chen,et al.  Examining the Quality of Synthetic Origin-Destination Trip Table Estimated by Path Flow Estimator , 2005 .

[26]  S. Eisenman,et al.  Using probe data to estimate OD matrices , 2004, Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749).

[27]  Moshe E. Ben-Akiva,et al.  Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin-Destination Flows , 2000, Transp. Sci..

[28]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[29]  Hai Yang,et al.  Optimal traffic counting locations for origin–destination matrix estimation , 1998 .

[30]  Hai Yang,et al.  An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts , 1991 .

[31]  L. Bailey The Kalman Filter , 2010 .

[32]  Hossein Tavana,et al.  Internally-consistent estimation of dynamic network origin-destination flows from intelligent transportation systems data using bi-level optimization , 2001 .

[33]  Mark A. Turnquist,et al.  Estimating truck travel patterns in urban areas , 1994 .

[34]  Hani S. Mahmassani,et al.  Number and Location of Sensors for Real-Time Network Traffic Estimation and Prediction , 2006 .

[35]  W. H. K. Lam,et al.  Accuracy of O-D estimates from traffic counts , 1990 .

[36]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[37]  Nanne J. Van Der Zijpp,et al.  Dynamic OD-Matrix Estimation from Traffic Counts and Automated Vehicle Identification Data , 1997 .

[38]  Richard M. Stanley Optimal Estimation With an Introduction to Stochastic Control , 1988 .

[39]  Yasuo Asakura,et al.  Origin-destination matrices estimation model using automatic vehicle identification data and its application to the Han-Shin expressway network , 2000 .

[40]  Nanne J. Van Der Zijpp,et al.  Dynamic Origin-Destination Matrix Estimation from Traffic Counts and Automated Vehicle Identification Data , 1997 .

[41]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[42]  Chao Yang,et al.  Models and algorithms for the screen line-based traffic-counting location problems , 2006, Comput. Oper. Res..

[43]  Henk J van Zuylen,et al.  The most likely trip matrix estimated from traffic counts , 1980 .

[44]  M. Maher INFERENCES ON TRIP MATRICES FROM OBSERVATIONS ON LINK VOLUMES: A BAYESIAN STATISTICAL APPROACH , 1983 .