Active O,Npy,N-titanium(IV) fluoride precatalysts for ethylene polymerization: exploring "fluoride effects" on polymer properties and catalytic performance

Three examples of discrete six-coordinate O,Npy,N-bearing titanium(IV) trifluoride complexes, [{2-(C5H4N)-6-(CMe2O)C5H3N}TiF3] (1), [{2-(C6H4-2′-O),6-(CMe═N(2,6-i-Pr2C6H3))C5H3N}TiF3] (2a), and [{2-(3-C12H8-2-O)-6-(CMe═N(2,6-i-Pr2C6H3))C5H3N}TiF3] (3a), were prepared using a one-step HF elimination protocol from cis-[(THF)2TiF4] and the corresponding pincer ligand precursor (HL1, HL2H, and HL2Ph). A mer configuration of the three fluoride ligands is adopted in their solid-state structures, which is mirrored in solution, as shown by mutual two-bond F–F coupling in their 19F{1H} NMR spectra. For purposes of comparison, the chloride counterparts of 2a and 3a, [{2-(C6H4-2′-O),6-(CMe═N(2,6-i-Pr2C6H3)C5H3N}TiCl3] (2b) and [{2-(3-C12H8-2-O)-6-(CMe═N(2,6-i-Pr2C6H3))C5H3N}TiCl3] (3b), are also reported. On treatment with excess MAO, 1 is scarcely active in ethylene polymerization, 2a is more active, and the most sterically protected system, 3a, represents the most active nonmetallocene metal-fluoride precatalyst r...

[1]  Richard A. Collins,et al.  Group 4 metal complexes for homogeneous olefin polymerisation: a short tutorial review , 2015, Applied Petrochemical Research.

[2]  E. G. Hope,et al.  O,N,N-pincer ligand effects on oxidatively induced carbon-chlorine coupling reactions at palladium. , 2015, Dalton transactions.

[3]  J. S. McIndoe,et al.  Mass spectrometric characterization of methylaluminoxane-activated metallocene complexes. , 2015, Chemistry.

[4]  W. Burghardt,et al.  Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization , 2014 .

[5]  S. Mecking,et al.  Post-metallocenes in the industrial production of polyolefins. , 2014, Angewandte Chemie.

[6]  H. Roesky,et al.  A survey of titanium fluoride complexes, their preparation, reactivity, and applications , 2014 .

[7]  M. Jawaid,et al.  Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends , 2013 .

[8]  Kuldip Singh,et al.  Phenolate Substituent Effects on Ring-Opening Polymerization of ε-Caprolactone by Aluminum Complexes Bearing 2-(Phenyl-2-olate)-6-(1-amidoalkyl)pyridine Pincers , 2013 .

[9]  C. Redshaw,et al.  Tridentate ligands and beyond in group IV metal α-olefin homo-/co-polymerization catalysis. , 2012, Chemical Society reviews.

[10]  Wen‐Hua Sun,et al.  Synthesis and characterization of trichlorotitanium 2-(2-pyridinyliminomethyl)phenolates and their ethylene (co-)polymerization behavior , 2011 .

[11]  Wen‐Hua Sun,et al.  Synthesis, characterization, and ethylene (Co)polymerization behavior of trichlorotitanium 2‐(1‐(arylimino)propyl)quinolin‐8‐olates , 2011 .

[12]  I. Goldberg,et al.  Salalen titanium complexes in the highly isospecific polymerization of 1-hexene and propylene. , 2011, Angewandte Chemie.

[13]  Shu Zhang,et al.  Design of vanadium complex catalysts for precise olefin polymerization. , 2011, Chemical reviews.

[14]  T. Marks,et al.  Multinuclear olefin polymerization catalysts. , 2011, Chemical reviews.

[15]  H. Terao,et al.  FI catalysts for olefin polymerization--a comprehensive treatment. , 2011, Chemical reviews.

[16]  W. Levason,et al.  Taking TiF4 complexes to extremes--the first examples with phosphine co-ligands. , 2010, Dalton transactions.

[17]  M. Bochmann The Chemistry of Catalyst Activation: The Case of Group 4 Polymerization Catalysts† , 2010 .

[18]  Zheng Wang,et al.  Synthesis, characterization, and catalytic behaviours of beta-carbonylenamine-derived [O- NS]TiCl3 complexes in ethylene homo- and copolymerization. , 2009, Dalton transactions.

[19]  K. Nomura Half-titanocenes containing anionic ancillary donor ligands as promising new catalysts for precise olefin polymerisation. , 2009, Dalton transactions.

[20]  C. Rimnac,et al.  Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. , 2009, Journal of the mechanical behavior of biomedical materials.

[21]  G. Talarico,et al.  On the First Insertion of α-Olefins in Hafnium Pyridyl-Amido Polymerization Catalysts , 2009 .

[22]  D. Pappalardo,et al.  Mechanism of stereospecific polymerization of α-olefins by late-transition metal and octahedral group 4 metal catalysts , 2009 .

[23]  T. Fujita,et al.  Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation. , 2009, Accounts of chemical research.

[24]  G. Talarico,et al.  “Uni et Trini”: In Situ Diversification of (Pyridylamide)hafnium(IV) Catalysts , 2009 .

[25]  A. White,et al.  Group 4 metal complexes bearing new tridentate (NNO) ligands: Benzyl migration and formation of unusual C–C coupled products , 2009 .

[26]  I. Goldberg,et al.  C1-Symmetric Zirconium Complexes of [ONNO′]-Type Salan Ligands: Accurate Control of Catalyst Activity, Isospecificity, and Molecular Weight in 1-Hexene Polymerization , 2009 .

[27]  Kuldip Singh,et al.  Use of Suzuki cross-coupling as a route to 2-phenoxy-6-iminopyridines and chiral 2-phenoxy-6-(methanamino)pyridines , 2008 .

[28]  Yong Tang,et al.  One-Pot Screening of Titanium Catalysts for Ethylene Polymerization , 2008 .

[29]  K. Abboud,et al.  Intra- and intermolecular NMR studies on the activation of arylcyclometallated hafnium pyridyl-amido olefin polymerization precatalysts. , 2008, Journal of the American Chemical Society.

[30]  Tomoaki Matsugi,et al.  High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. , 2008, Chemical Society reviews.

[31]  H. Roesky,et al.  Preparation of the hydrocarbon-soluble trifluoro complex LTiF3 with a β-diketiminato ligand , 2008 .

[32]  F. Meyer,et al.  Tetranuclear CoII, MnII, and CuII complexes of a novel binucleating pyrazolate ligand preorganized for the self-assembly of compact [2 x 2]-grid structures. , 2008, Inorganic chemistry.

[33]  I. Goldberg,et al.  Titanium and zirconium complexes of robust salophan ligands. Coordination chemistry and olefin polymerization catalysis. , 2008, Journal of the American Chemical Society.

[34]  Cong Wang,et al.  Ethylene‐Norbornene Copolymerization by New Titanium Complexes Bearing Tridentate Ligands. Sidearm Effects on Catalytic Activity , 2007 .

[35]  Boonyarach Kitiyanan,et al.  Nonbridged half-metallocenes containing anionic ancillary donor ligands: New promising candidates as catalysts for precise olefin polymerization , 2007 .

[36]  C. Pellecchia,et al.  Tridentate [N,N,O] schiff-base group 4 metal complexes : Synthesis, structural characterization and reactivity in olefin polymerization , 2006 .

[37]  W. Baumann,et al.  Formation of zirconocene fluoro complexes: No deactivation in the polymerization of olefins by the contact-ion-pair catalysts [Cp'2ZrR]+)[RB(C6F5)3]-. , 2006, Angewandte Chemie.

[38]  Zhi Ma,et al.  Synthesis and characterization of titanium(IV) complexes bearing monoanionic [O-NX] (X = O, S, Se) tridentate ligands and their behaviors in ethylene homo- and copolymerizaton with 1-hexene , 2006 .

[39]  Anne M. LaPointe,et al.  Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies. , 2006, Angewandte Chemie.

[40]  Cong Wang,et al.  Novel Titanium Catalysts Bearing an [O, N, S] Tridentate Ligand for Ethylene Homo- and Copolymerization† , 2005 .

[41]  T. Fujita,et al.  Bis(pyrrolide-imine) Ti Complexes with MAO: A New Family of High Performance Catalysts for Olefin Polymerization , 2005 .

[42]  J. Passmore,et al.  Hexafluoroantimony(V) salts of the cationic Ti(IV) fluoride non metallocene complexes [TiF3(MeCN)3]+ and [TiF2L]2+ (L = 15-Crown-5 and 18-Crown-6). Preparation, characterization and thermodynamic stability. , 2005, Dalton transactions.

[43]  D. Stephan The Road to Early-Transition-Metal Phosphinimide Olefin Polymerization Catalysts , 2005 .

[44]  Paul D. Bolton,et al.  Transition Metal Imido Compounds as Ziegler–Natta Olefin Polymerisation Catalysts , 2005 .

[45]  W. Baumann,et al.  Reactions of Zirconocene 2-Vinylpyridine Complexes with Diisobutylaluminum Hydride and Fluoride , 2004 .

[46]  Jie Sun,et al.  Synthesis and Characterization of Novel Tridentate [NOP] Titanium Complexes and Their Application to Copolymerization and Polymerization of Ethylene , 2004 .

[47]  T. Marks,et al.  New Mononuclear and Polynuclear Perfluoroarylmetalate Cocatalysts for Stereospecific Olefin Polymerization , 2004 .

[48]  H. Terao,et al.  FI catalysts: new olefin polymerization catalysts for the creation of value-added polymers. , 2004, Chemical record.

[49]  T. Nakano,et al.  Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain. , 2003, Chemistry.

[50]  M. Mitani,et al.  Ethylene and propylene polymerization behavior of a series of bis(phenoxy–imine)titanium complexes , 2003 .

[51]  Vince Murphy,et al.  A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: discovery of a new class of high temperature single-site group (IV) copolymerization catalysts. , 2003, Journal of the American Chemical Society.

[52]  Jiling. Huang,et al.  Syndiospecific polymerization of styrene catalyzed in situ by alkoxyl substituted half-sandwich titanocene and BF3·Et2O , 2003 .

[53]  V. C. Gibson,et al.  Advances in non-metallocene olefin polymerization catalysis. , 2003, Chemical reviews.

[54]  G. Coates,et al.  Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler-Natta chemistry. , 2002, Angewandte Chemie.

[55]  G. Coates Polymerization catalysis at the millennium: frontiers in stereoselective, metal-catalyzed polymerization , 2002 .

[56]  H. Cramail,et al.  The negative role of chloride counter-anion in the activation process of zirconocene dichloride by methylaluminoxane , 2001 .

[57]  W. Kaminsky,et al.  Homo‐ and Copolymerization of Styrene and Alkylstyrenes with the Highly Active Catalyst System CpTiF3/MAO , 2001 .

[58]  H. Roesky,et al.  Crystal Structure of the Trinuclear Titanium Complex TiF3(μ-Ph2PO2)3Ti(μ-Ph2PO2)3TiF3· 1.5CH3CN: Complete Substitution of Ph2PO2-Anions for the Fluorine Atoms in Titanium Tetrafluoride , 2001 .

[59]  T. Marks,et al.  Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. , 2000, Chemical reviews.

[60]  I. Usón,et al.  Reaction of dimethylaluminumfluoride with primary amines RNH2 (R = t-Bu, 2,6-i-Pr2C6H3) , 2000 .

[61]  Steven J Brown,et al.  REMARKABLY ACTIVE NON-METALLOCENE ETHYLENE POLYMERIZATION CATALYSTS , 1999 .

[62]  I. Usón,et al.  Difference in Reactivity of Cyclopentadienyltitanium Fluorides and Chlorides Using AlR3 (R = Me, Et): Syntheses and Structures of Ti(III)−F(Cl)−Al Compounds (η5-C5Me5)2Ti2(μ-Cl)6Al2Me4, (η5-C5Me5)2Ti2(μ-F)8Al4Me8, and [(η5-C5H4Me)2Ti(μ-F)2AlEt2]2† , 1999 .

[63]  G. Britovsek,et al.  The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. , 1999, Angewandte Chemie.

[64]  T. Marks,et al.  Sterically encumbered (perfluoroaryl) borane and aluminate cocatalysts for tuning cation - Anion ion pair structure and reactivity in metallocene polymerization processes. A synthetic, structural, and polymerization study , 1998 .

[65]  W. Kaminsky Highly active metallocene catalysts for olefin polymerization , 1998 .

[66]  H. Roesky,et al.  Organometallic Fluorides: Compounds Containing Carbon−Metal−Fluorine Fragments of d-Block Metals† , 1997 .

[67]  W. Kaminsky,et al.  Fluorinated Half-Sandwich Complexes as Catalysts in Syndiospecific Styrene Polymerization , 1997 .

[68]  T. Marks,et al.  Very large counteranion modulation of cationic metallocene polymerization activity and stereoregulation by a sterically congested (perfluoroaryl)fluoroaluminate , 1997 .

[69]  H. Roesky,et al.  Metallacyclodisiladiazanes of Titanium and zirconium; Synthesis, Structure and Polymerization Studies , 1997 .

[70]  E. Parisini,et al.  Group 4 Metal Amido Fluorides and Chlorides: Molecular Structures and the First Comparison in Ethylene Polymerization Catalysis , 1996 .

[71]  Linkai Chang,et al.  Studies of non-isothermal crystallization and melting of ultra high molecular weight polyethylene , 1995 .