Optimum detection of robust perceptual-model-based image-adaptive watermarks

Image-adaptive watermarking based on sophisticated human perceptual models is capable of embedding watermarks with maximum strengths while incurring no perceptual loss. Very strong robustness as well as high information capacity can be achieved using these schemes. In this paper, the optimum detector for the perceptual-model-based robust watermarking is constructed, and the performance analysis is investigated. The new detector asymptotically is most efficient for weak signals, and particularly it is the most powerful for the perceptual-model-constrained watermarks. The experiments results validate our theoretical analysis.

[1]  Thomas S. Huang,et al.  Blind digital watermarking for images and videos and performance analysis , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[2]  Fernando Pérez-González,et al.  Statistical analysis of watermarking schemes for copyright protection of images , 1999, Proc. IEEE.

[3]  G. C. Langelaar,et al.  Watermarking digital image and video data , 2000 .

[4]  Iwan Setyawan,et al.  Watermarking digital image and video data. A state-of-the-art overview , 2000 .

[5]  Wenjun Zeng,et al.  A statistical watermark detection technique without using original images for resolving rightful ownerships of digital images , 1999, IEEE Trans. Image Process..

[6]  Wenjun Zeng,et al.  Image-adaptive watermarking using visual models , 1998, IEEE J. Sel. Areas Commun..

[7]  Thomas S. Huang,et al.  Optimum detection of multiplicative watermarks using locally optimum decision rule , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[8]  Fernando Pérez-González,et al.  DCT-domain watermarking techniques for still images: detector performance analysis and a new structure , 2000, IEEE Trans. Image Process..

[9]  Mauro Barni,et al.  Optimum Decoding of Non-additive Full Frame DFT Watermarks , 1999, Information Hiding.

[10]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[11]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[12]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jean-Paul M. G. Linnartz,et al.  On the reliability of detecting electronic watermarks in digital images , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[14]  John B. Thomas,et al.  Detectors for discrete-time signals in non-Gaussian noise , 1972, IEEE Trans. Inf. Theory.

[15]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[16]  R. R. Clarke Transform coding of images , 1985 .

[17]  Ahmed H. Tewfik,et al.  Multiresolution scene-based video watermarking using perceptual models , 1998, IEEE J. Sel. Areas Commun..

[18]  Edward J. Delp,et al.  Perceptual watermarks for digital images and video , 1999, Electronic Imaging.