Robust decentralized multi-model adaptive template tracking

In this paper, a robust and efficient visual tracking method through the fusion of several distributed adaptive templates is proposed. It is assumed that the target object is initially localized either manually or by an object detector at the first frame. The object region is then partitioned into several non-overlapping subregions. The new location of each subregion is found by an EM-like gradient-based optimization algorithm. The proposed localization algorithm is capable of simultaneously optimizing several possible solutions in a probabilistic framework. Each possible solution is an initializing point for the optimization algorithm which improves the accuracy and reliability of the proposed gradient-based localization method to the local extrema. Moreover, each subregion is defined by two adaptive templates named immediate and delayed templates to solve the ''drift'' problem. The immediate template is updated by short-term appearance changes whereas the delayed template models the long-term appearance variations. Therefore, the combination of short-term and long-term appearance modeling can solve the template tracking drift problem. At each tracking step, the new location of an object is estimated by fusing the tracking result of each subregion. This fusion method is based on the local and global properties of the object motion to increase the robustness of the proposed tracking method against outliers, shape variations, and scale changes. The accuracy and robustness of the proposed tracking method is verified by several experimental results. The results also show the superior efficiency of the proposed method by comparing it to several state-of-the-art trackers as well as the manually labeled ''ground truth'' data.

[1]  Jim Euchner Design , 2014, Catalysis from A to Z.

[2]  Qing Wang,et al.  Adaptive multi-cue tracking by online appearance learning , 2011, Neurocomputing.

[3]  D. Rand,et al.  The Sony PlayStation II EyeToy: Low-Cost Virtual Reality for Use in Rehabilitation , 2008, Journal of neurologic physical therapy : JNPT.

[4]  Michael J. Black,et al.  Automatic Detection and Tracking of Human Motion with a View-Based Representation , 2002, ECCV.

[5]  D. Zhang,et al.  Scale and orientation adaptive mean shift tracking , 2012 .

[6]  Ramin Zabih,et al.  Bayesian multi-camera surveillance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[7]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[8]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[9]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Y. Bar-Shalom Tracking and data association , 1988 .

[12]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[13]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[14]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[15]  Ming-Hsuan Yang,et al.  Incremental Learning for Visual Tracking , 2004, NIPS.

[17]  Yi Zhang,et al.  Non-rigid object tracking in complex scenes , 2009, Pattern Recognit. Lett..

[18]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[19]  Dorin Comaniciu,et al.  Design, analysis, and engineering of video monitoring systems: an approach and a case study , 2001, Proc. IEEE.

[20]  F. Xavier Roca,et al.  Action-specific motion prior for efficient Bayesian 3D human body tracking , 2009, Pattern Recognit..

[21]  Supun Samarasekera,et al.  Aerial video surveillance and exploitation , 2001, Proc. IEEE.

[22]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[23]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  João Manuel R. S. Tavares,et al.  Tracking features in image sequences with Kalman filtering, global optimization, mahalanobis distance and a management model , 2009 .

[26]  Ankur Agarwal,et al.  Learning to track 3D human motion from silhouettes , 2004, ICML.

[27]  C. Cafforio,et al.  Tracking moving objects in television images , 1979 .

[28]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[29]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[30]  Antonio M. López,et al.  Variance reduction techniques in particle-based visual contour tracking , 2009, Pattern Recognit..

[31]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[32]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[34]  Thomas Kalinke,et al.  Computer vision for driver assistance systems , 1998, Defense, Security, and Sensing.

[35]  Visvanathan Ramesh Real-time vision at Siemens Corporate Research , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[36]  Clark F. Olson Image registration by aligning entropies , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[37]  R. Mahler Engineering statistics for multi-object tracking , 2001, Proceedings 2001 IEEE Workshop on Multi-Object Tracking.

[38]  Rogério Schmidt Feris,et al.  Video Analytics in Urban Environments , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[39]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[40]  Dorin Comaniciu,et al.  Multi-model Component-Based Tracking Using Robust Information Fusion , 2004, ECCV Workshop SMVP.

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[43]  David Beymer,et al.  A real-time computer vision system for vehicle tracking and traffic surveillance , 1998 .

[44]  Nikolaos Papanikolopoulos,et al.  Adaptive robotic visual tracking: theory and experiments , 1993, IEEE Trans. Autom. Control..

[45]  Jo a o Manuel R. S. Tavares,et al.  Methods to automatically build Point Distribution Models for objects like hand palms and faces represented in images , 2008 .

[46]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[47]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[48]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[49]  Geraldo F. Silveira,et al.  Unified Direct Visual Tracking of Rigid and Deformable Surfaces Under Generic Illumination Changes in Grayscale and Color Images , 2010, International Journal of Computer Vision.

[50]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[51]  Gregory D. Hager,et al.  Joint probabilistic techniques for tracking multi-part objects , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[52]  Thomas S. Huang,et al.  JPDAF based HMM for real-time contour tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[53]  M J M Vasconcelos,et al.  Using Statistical Deformable Models to Reconstruct Vocal Tract Shape from Magnetic Resonance Images , 2010, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[54]  Irene Y. H. Gu,et al.  Robust Visual Object Tracking Using Multi-Mode Anisotropic Mean Shift and Particle Filters , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[55]  James M. Rehg,et al.  A multiple hypothesis approach to figure tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[56]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[57]  David Zhang,et al.  Robust Object Tracking Using Joint Color-Texture Histogram , 2009, Int. J. Pattern Recognit. Artif. Intell..

[58]  João Manuel R S Tavares,et al.  Towards the automatic study of the vocal tract from magnetic resonance images. , 2011, Journal of voice : official journal of the Voice Foundation.

[59]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Tieniu Tan,et al.  Real-time hand tracking using a mean shift embedded particle filter , 2007, Pattern Recognit..

[61]  B. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, CVPR 2004.

[62]  Robert L. Stevenson,et al.  Studentized Dynamical System for Robust Object Tracking , 2011, IEEE Transactions on Image Processing.

[63]  Gary R. Bradski,et al.  Real time face and object tracking as a component of a perceptual user interface , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[64]  Alessandro Leone,et al.  Shadow detection for moving objects based on texture analysis , 2007, Pattern Recognit..

[65]  Ting Yu,et al.  Intelligent Video for Protecting Crowded Sports Venues , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[66]  Dimitris N. Metaxas,et al.  Optical Flow Constraints on Deformable Models with Applications to Face Tracking , 2000, International Journal of Computer Vision.

[67]  Simon Baker,et al.  Active Appearance Models Revisited , 2004, International Journal of Computer Vision.

[68]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[70]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[71]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Lorenzo Torresani,et al.  Tracking and modeling non-rigid objects with rank constraints , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[73]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[74]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[75]  James S. Duncan,et al.  Non-Rigid Motion Models for Tracking the Left Ventricular Wall , 1991, IPMI.

[76]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..