Local discontinuous Galerkin methods with implicit-explicit multistep time-marching for solving the nonlinear Cahn-Hilliard equation

Abstract In this paper, we develop the fully discrete local discontinuous Galerkin (LDG) methods coupled with the implicit-explicit (IMEX) multistep time marching for solving the nonlinear Cahn-Hilliard equation. To be more specific, we rewrite the Cahn-Hilliard equation in a novel form by adding and subtracting a “linear” term. Then we discretize the spatial derivatives with the LDG methods and the temporal derivative with the IMEX multistep method. Finally, a series of numerical experiments are given to verify the accuracy, efficiency and validness of proposed method.

[1]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[2]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[3]  Haijin Wang,et al.  Local discontinuous Galerkin methods with explicit Runge‐Kutta time marching for nonlinear carburizing model , 2018 .

[4]  Chi-Wang Shu,et al.  Unconditional Energy Stability Analysis of a Second Order Implicit–Explicit Local Discontinuous Galerkin Method for the Cahn–Hilliard Equation , 2017, Journal of Scientific Computing.

[5]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[6]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[7]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[8]  Yinnian He,et al.  The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..

[9]  Chi-Wang Shu,et al.  Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs , 2017 .

[10]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[11]  Liquan Mei,et al.  Implicit-explicit multistep methods for general two-dimensional nonlinear Schrödinger equations , 2016 .

[12]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[13]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[14]  Jaemin Shin,et al.  Unconditionally stable methods for gradient flow using Convex Splitting Runge-Kutta scheme , 2017, J. Comput. Phys..

[15]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[16]  Yan Xu,et al.  Local discontinuous Galerkin methods for the generalized Zakharov system , 2010, J. Comput. Phys..

[17]  Xiaoming He,et al.  Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method , 2017, J. Comput. Appl. Math..

[18]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[19]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[20]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[21]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[22]  Haijin Wang,et al.  Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems , 2016, Appl. Math. Comput..

[23]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[24]  Haijin Wang,et al.  Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems , 2015, SIAM J. Numer. Anal..

[25]  Xiao Li,et al.  Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation , 2018, J. Comput. Phys..

[26]  Huailing Song,et al.  Energy SSP-IMEX Runge-Kutta methods for the Cahn-Hilliard equation , 2016, J. Comput. Appl. Math..

[27]  Benjamin Seibold,et al.  Unconditional Stability for Multistep ImEx Schemes: Theory , 2016, SIAM J. Numer. Anal..

[28]  Qiang Zhang,et al.  Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems , 2016 .

[29]  Jia Zhao,et al.  Efficient linear schemes for the nonlocal Cahn-Hilliard equation of phase field models , 2019, Comput. Phys. Commun..

[30]  Jie Shen,et al.  Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization , 2018, J. Comput. Phys..

[31]  Haijin Wang,et al.  Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions , 2018, J. Comput. Appl. Math..

[32]  Yan Xu,et al.  Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations , 2017, J. Comput. Phys..

[33]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[34]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[35]  Benjamin Seibold,et al.  Unconditional stability for multistep ImEx schemes: Practice , 2018, J. Comput. Phys..

[36]  Shu Chi-Wang,et al.  Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems , 2019 .

[37]  Dong Li,et al.  On Second Order Semi-implicit Fourier Spectral Methods for 2D Cahn–Hilliard Equations , 2017, J. Sci. Comput..