Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method

This article reviews a variety of methods to obtain the electron temperature and density by the emission line ratios for low-temperature plasmas containing argon or nitrogen gas. Based on the collisional–radiative model of excited particles, the underlying principle of each of these methods is described, along with the criterion on how to select an appropriate line-ratio method according to the discharge conditions. Limitations on the application of each line-ratio technique are also discussed.

[1]  J. E. Chilton,et al.  Use of radiation trapping for measuring electron-impact excitation cross sections for higher resonance levels of rare-gas atoms , 2002 .

[2]  H. Akatsuka Excited level populations and excitation kinetics of nonequilibrium ionizing argon discharge plasma of atmospheric pressure , 2009 .

[3]  K. V. Kozlov,et al.  Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas , 2005 .

[4]  M. V. Malyshev,et al.  Trace rare gases optical emission spectroscopy: nonintrusive method for measuring electron temperatures in low-pressure, low-temperature plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Xi-Ming Zhu,et al.  A simple collisional–radiative model for low-pressure argon discharges , 2007 .

[6]  J. Boffard,et al.  Electron-impact excitation cross sections of the higher argon 3 p 5 np ( n = 5 , 6 , 7 ) levels , 2003 .

[7]  D. Strickland,et al.  New Survey of Electron Impact Cross Sections for Photoelectron and Auroral Electron Energy Loss Calculations , 1997 .

[8]  Y. Pu,et al.  Experimental investigation of emission intensities in an inductively coupled afterglow neon plasma , 2009 .

[9]  Russ R. Laher,et al.  Franck–Condon Factors, r‐Centroids, Electronic Transition Moments, and Einstein Coefficients for Many Nitrogen and Oxygen Band Systems , 1992 .

[10]  K. Behringer Diagnostics and modelling of ECRH microwave discharges , 1991 .

[11]  A. Ricard,et al.  Determination of the electron temperature in a planar inductive argon plasma with emission spectroscopy and electrostatic probe , 2008 .

[12]  B. Chiaro,et al.  Electron-impact excitation of argon: Optical emission cross sections in the range of 300-2500 nm , 2007 .

[13]  V. M. Donnelly Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy , 2004 .

[14]  P. Ambrico,et al.  OODR-LIF direct measurement of N2(C 3Πu, v = 0–4) electronic quenching and vibrational relaxation rate coefficients by N2 collision , 2006 .

[15]  A. Wendt,et al.  Measurement of metastable and resonance level densities in rare-gas plasmas by optical emission spectroscopy , 2009 .

[16]  Paul H. Krupenie,et al.  The spectrum of molecular nitrogen , 1977 .

[17]  J. Loureiro,et al.  Coupled electron energy and vibrational distribution functions in stationary N2 discharges , 1986 .

[18]  Hiroaki Nishimura,et al.  Cross Sections for Collisions of Electrons and Photons with Oxygen Molecules , 1986 .

[19]  H. Langhoff,et al.  A kinetic model for the formation of excimers , 1997 .

[20]  U. Czarnetzki,et al.  Quenching rate constants for reactions of Ar(4p′[1/2]0, 4p[1/2]0, 4p[3/2]2, and 4p[5/2]2) atoms with 22 reagent gases , 2001 .

[21]  Yoon Ho Choi,et al.  Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas , 2006 .

[22]  Y. Pu,et al.  A novel method to determine electron density by optical emission spectroscopy in low-pressure nitrogen plasmas , 2006 .

[23]  John B. Boffard,et al.  TOPICAL REVIEW: Application of excitation cross sections to optical plasma diagnostics , 2004 .

[24]  A. Yanguas-Gil,et al.  A robust method to measure metastable and resonant state densities from emission spectra in argon and argon-diluted low pressure plasmas , 2008 .

[25]  J. Borysow,et al.  Kinetics of the (A3 Sigma u+, v=0) state of N2 in the near afterglow of a nitrogen pulsed discharge , 1994 .

[26]  Y. Pu,et al.  Tuning the electron temperature of a nitrogen plasma by adding helium and argon , 2003 .

[27]  J. Loureiro,et al.  Role played by the N2(A3Σu+) metastable in stationary N2 and N2-O2 discharges , 2001 .

[28]  R. Chang,et al.  Radiative lifetimes and two‐body deactivation rate constants for Ar(3p5, 4p) and Ar(3p5,4p′) states , 1978 .

[29]  I. Adamovich,et al.  Vibrational Energy Transfer Rates Using a Forced Harmonic Oscillator Model , 1998 .

[30]  J. E. Chilton,et al.  Measurement of electron-impact excitation into the 3 p 5 4 p levels of argon using Fourier-transform spectroscopy , 1998 .

[31]  P. Ambrico,et al.  On the collision quenching of by N2 and O2 and its influence on the measurement of E/N by intensity ratio of nitrogen spectral bands , 2010 .

[32]  W. C. Martin,et al.  Atomic Spectra Database , 1999 .

[33]  Y. Pu,et al.  Spatially resolved optical emission spectroscopy investigation of E and H modes in cylindrical inductively coupled plasmas , 2007 .

[34]  Characterization of transformer coupled oxygen plasmas by trace rare gases-optical emission spectroscopy and Langmuir probe analysis , 2000 .

[35]  S. Schechter,et al.  Measurements of vibrationally excited molecules by Raman scattering. II. Surface deactivation of vibrationally excited N2 , 1974 .

[36]  J. Mullen,et al.  A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model , 2006 .

[37]  A. Rodero,et al.  Spectroscopic study of a stationary surface-wave sustained argon plasma column at atmospheric pressure , 2000 .

[38]  P. Supiot,et al.  Electrical and spectroscopic characterizations of a low pressure argon discharge created by a broad-band helical coupling device , 2009 .

[39]  V. Godyak,et al.  Nonequilibrium EEDF in gas discharge plasmas , 2006, IEEE Transactions on Plasma Science.

[40]  L. G. Piper State‐to‐state N2(A 3Σ+u) energy‐pooling reactions. I. The formation of N2(C 3Πu) and the Herman infrared system , 1988 .

[41]  Xi-Ming Zhu,et al.  Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas , 2008 .

[42]  B. Pokrzywka Electron Induced Collisional Population Decay Rates for Levels of 3p54s and 3p54p Manifolds of ArI in Plasma , 2002 .

[43]  V. Guerra,et al.  Determination of the electron temperature and density in the negative glow of a nitrogen pulsed discharge using optical emission spectroscopy , 2010 .

[44]  Huimin Song,et al.  Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics , 2008 .

[45]  T. Märk,et al.  Calculated cross sections for the electron-impact ionization of excited argon atoms using the DM formalism , 2004 .

[46]  C. Lin,et al.  Measurement of the cross sections for electron-impact excitation into the 5 p 5 6 p levels of xenon , 1998 .

[47]  A. Yanguas-Gil,et al.  Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: A critical approach , 2006 .

[48]  Vincent M. Donnelly,et al.  Spatially resolved electron temperatures, species concentrations, and electron energy distributions in inductively coupled chlorine plasmas, measured by trace-rare gases optical emission spectroscopy , 2002 .

[49]  H. Griem Principles of Plasma Spectroscopy , 1997 .

[50]  U. Fantz,et al.  Spectroscopic diagnostics of glow discharge plasmas with non-Maxwellian electron energy distributions , 1994 .

[51]  K. V. Kozlov,et al.  Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure , 2001 .

[52]  A. Napartovich,et al.  Experimental and theoretical study of the transition between diffuse and contracted forms of the glow discharge in argon , 2008 .

[53]  V. A. Shakhatov,et al.  Kinetics of excitation of N2(A3Σu+, vA), N2(C3Πu, vc), and N2(B3Πg, vB) in nitrogen discharge plasmas as studied by means of emission spectroscopy and computer simulation , 2008 .

[54]  V. Zeman,et al.  Electron impact excitation of the argon 3p54s configuration: differential cross-sections and cross-section ratios , 2004 .

[55]  Z. Petrović,et al.  Resonant vibrational excitation/de-excitation of N2 (v) by electrons , 1999 .

[56]  D. Schram,et al.  A novel collisional radiative model with a numerical bottom and an analytical top , 1991 .

[57]  V. Zeman,et al.  Electron-impact excitation from the(3p54s)metastable states of argon , 1999 .

[58]  Xi-Ming Zhu,et al.  Different patterns of high-energy and low-energy electrons in an atmospheric-pressure microplasma generated by a hairpin resonator , 2010 .

[59]  L. Anderson,et al.  Excitation into3p55plevels from the metastable levels of Ar , 2007 .

[60]  G. Piech,et al.  Measurement of electron-impact excitation cross sections out of metastable levels of argon and comparison with ground-state excitation , 1999 .

[61]  Masa-aki Suzuki,et al.  Spectroscopic measurement of electron temperature and density in argon plasmas based on collisional-radiative model , 2000 .

[62]  F. Habraken,et al.  Characterization of a low-pressure argon plasma using optical emission spectroscopy and a global model , 2007 .

[63]  Y. Pu,et al.  The dependence of GaN growth rate on electron temperature in an ECR plasma , 2000 .

[64]  Xi-Ming Zhu,et al.  Determining the electron temperature and the electron density by a simple collisional–radiative model of argon and xenon in low-pressure discharges , 2009 .

[65]  V. Guerra,et al.  Self-consistent electron and heavy-particle kinetics in a low-pressure - glow discharge , 1997 .

[66]  J. Velazco,et al.  Rate constants and quenching mechanisms for the metastable states of argon, krypton, and xenon , 1978 .

[67]  Xi-Ming Zhu,et al.  A simple collisional–radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels , 2010 .

[68]  J. Loureiro,et al.  Self-consistent kinetic model of the short-lived afterglow in flowing nitrogen , 2004 .

[69]  J. Margot,et al.  Numerical Modeling of a He–N2 Capillary Surface Wave Discharge at Atmospheric Pressure , 2000 .

[70]  N. Sadeghi,et al.  Radiative lifetimes and collisional energy transfer rate constants in Ar of the Ar(3p55p) and Ar(3p55p′) states , 1982 .

[71]  V. M. Donnelly,et al.  Electron energy distribution functions in low-pressure oxygen plasma columns sustained by propagating surface waves , 2009 .

[72]  V. Demidov,et al.  Investigation of a radio-frequency inductive- coupled-plasma discharge afterglow in noble gases , 2007 .

[73]  W. Lempert,et al.  Determination of nitrogen V V transfer rates by stimulated Raman pumping , 2004 .

[74]  V. M. Donnelly,et al.  Spatially resolved diagnostics of an atmospheric pressure direct current helium microplasma , 2005 .

[75]  Xi-Ming Zhu,et al.  A simple collisional–radiative model for low-pressure argon–oxygen mixture discharges , 2007 .

[76]  Xi-Ming Zhu,et al.  Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma , 2008 .

[77]  U. Fantz Basics of plasma spectroscopy , 2006 .

[78]  J. Vlček,et al.  A collisional-radiative model applicable to argon discharges over a wide range of conditions. I. Formulation and basic data , 1989 .

[79]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Nitrogen Molecules , 2006 .

[80]  V. A. Shakhatov,et al.  Diagnostics of a nonequilibrium nitrogen plasma from the emission spectra of the second positive system of N2 , 2006 .

[81]  M. V. Malyshev,et al.  Determination of electron temperatures in plasmas by multiple rare gas optical emission, and implications for advanced actinometry , 1997 .

[82]  I. Koleva,et al.  Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures , 2007 .

[83]  V. A. Shakhatov,et al.  Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation , 2009 .

[84]  V. Guerra,et al.  Kinetic modeling of low-pressure nitrogen discharges and post-discharges , 2004 .

[85]  J. Perrin,et al.  Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure , 2007 .

[86]  Vincent M. Donnelly,et al.  Measurement of electron temperatures and electron energy distribution functions in dual frequency capacitively coupled CF4/O2 plasmas using trace rare gases optical emission spectroscopy , 2009 .

[87]  H. Oechsner,et al.  Comparative determination of the electron temperature in Ar- and N2-plasmas with electrostatic probes, optical emission spectroscopy OES and energy dispersive mass spectrometry EDMS , 2001 .

[88]  Renaat Gijbels,et al.  Collisional-radiative model for an argon glow discharge , 1998 .

[89]  N. Bibinov,et al.  A comparative study of the electron distribution function in the positive columns in and /He dc glow discharges by optical spectroscopy and probes , 1998 .

[90]  Y. Pu,et al.  Determining the electron temperature in inductively coupled nitrogen plasmas by optical emission spectroscopy with molecular kinetic effects , 2005 .

[91]  Masa-aki Suzuki,et al.  Spectroscopic Measurement of Electron Temperature and Density in an Argon Plasma Jet Based on Collisional-Radiative Model , 2001 .

[92]  J. Amorim,et al.  A detailed discussion of the N2(C 3Πu) and N2(X 1Σg+) vibrational temperatures in N2 glow discharges , 2004 .

[93]  N. Bibinov,et al.  Determination of the electron energy distribution function via optical emission spectroscopy and a Langmuir probe in an ICP , 2008 .

[94]  Wen-Cong Chen,et al.  Electron density and ion energy dependence on driving frequency in capacitively coupled argon plasmas , 2007 .

[95]  Aman-ur-Rehman,et al.  Tuning effect of inert gas mixing on electron energy distribution function in inductively coupled discharges , 2005 .

[96]  V. M. Donnelly,et al.  Determination of electron temperature, atomic fluorine concentration, and gas temperature in inductively coupled fluorocarbon/rare gas plasmas using optical emission spectroscopy , 2002 .

[97]  N. Bibinov,et al.  Spectroscopic determination of the cold electron population in very low pressure ECR discharges in N2/He mixtures , 2005 .

[98]  P. Ambrico,et al.  New N2(C 3Πu, v) collision quenching and vibrational relaxation rate constants: 2. PG emission diagnostics of high-pressure discharges , 2007 .

[99]  U. Czarnetzki,et al.  Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering , 2009 .

[100]  E. Gargioni,et al.  Electron scattering from argon: Data evaluation and consistency , 2008 .

[101]  U. Czarnetzki,et al.  Phase resolved optical emission spectroscopy: a non-intrusive diagnostic to study electron dynamics in capacitive radio frequency discharges , 2010 .

[102]  A. Ricard,et al.  Determination of the vibrational, rotational and electron temperatures in N2 and Ar–N2 rf discharge , 2007 .

[103]  P. Vervisch,et al.  Influence of Ar(2)+ in an argon collisional-radiative model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  N. Bibinov,et al.  Absolute calibration of the efficiency of a VUV-monochromator/detector system in the range 110 - 450 nm , 1997 .

[105]  Xi-Ming Zhu,et al.  Nonequilibrium excited particle population distribution in low-temperature argon discharges , 2009 .

[106]  T. Shirai,et al.  Analytic cross sections for electron impact collisions with nitrogen molecules , 2006 .

[107]  Y. Pu,et al.  Effect of wall reflection on the determination of electron temperature by the line-ratio method in inductively coupled plasmas , 2005 .

[108]  L. G. Piper State‐to‐state N2(A 3∑+u) energy pooling reactions. II. The formation and quenching of N2(B 3Πg, v’=1–12) , 1988 .

[109]  L. G. Piper The excitation of N2(B 3Πg, v=1–12) in the reaction between N2(A 3Σ+u) and N2(X, v≥5) , 1989 .

[110]  R. Boswell,et al.  Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy , 2009 .

[111]  Xi-Ming Zhu,et al.  Reconstruction of ion energy distribution function in a capacitive rf discharge , 2009 .