Review and complements on mixed-hybrid finite element methods for fluid flows
暂无分享,去创建一个
[1] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[2] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[3] A MIXED NONCONFORMING FINITE ELEMENT FOR THE ELASTICITY AND STOKES PROBLEMS , 1999 .
[4] Wenbin Liu,et al. Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law , 1993 .
[5] C. E. Vulliamy. 82. A Note on Proto-Neolithic Flint Implements from the Chiltern Hills. , 1927 .
[6] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[7] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[8] Michel Fortin,et al. A mixed finite element for the stokes problem using quadrilateral elements , 1995, Adv. Comput. Math..
[9] J. Baranger,et al. Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .
[10] M. Fortin,et al. A new mixed finite element for the Stokes and elasticity problems , 1993 .
[11] Jacques Baranger,et al. Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .
[12] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[13] M. Fortin,et al. Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .
[14] D. Sandri,et al. Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .
[15] Serge Nicaise,et al. A refined mixed finite element method for the boussinesq equations in polygonal domains , 2001 .
[16] Mohamed Farhloul,et al. Analysis of non-singular solutions of a mixed Navier-Stokes formulation , 1996 .
[17] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[18] Serge Nicaise,et al. A mixed formulation of Boussinesq equations: Analysis of nonsingular solutions , 2000, Math. Comput..
[19] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[20] D. Arnold,et al. A new mixed formulation for elasticity , 1988 .
[21] R. Stenberg. A family of mixed finite elements for the elasticity problem , 1988 .