Review and complements on mixed-hybrid finite element methods for fluid flows

Mixed and hybrid finite element methods for the resolution of a wide range of linear and nonlinear boundary value problems (linear elasticity, Stokes problem, Navier-Stokes equations, Boussinesq equations, etc.) have known a great development in the last few years. These methods allow simultaneous computation of the original variable and its gradient, both of them being equally accurate. Moreover, they have local conservation properties (conservation of the mass and the momentum) as in the finite volume methods.The purpose of this paper is to give a review on some mixed finite elements developed recently for the resolution of Stokes and Navier-Stokes equations, and the linear elasticity problem. Further developments for a quasi-Newtonian flow obeying the power law are presented.

[1]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[2]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[3]  A MIXED NONCONFORMING FINITE ELEMENT FOR THE ELASTICITY AND STOKES PROBLEMS , 1999 .

[4]  Wenbin Liu,et al.  Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law , 1993 .

[5]  C. E. Vulliamy 82. A Note on Proto-Neolithic Flint Implements from the Chiltern Hills. , 1927 .

[6]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[7]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[8]  Michel Fortin,et al.  A mixed finite element for the stokes problem using quadrilateral elements , 1995, Adv. Comput. Math..

[9]  J. Baranger,et al.  Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .

[10]  M. Fortin,et al.  A new mixed finite element for the Stokes and elasticity problems , 1993 .

[11]  Jacques Baranger,et al.  Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .

[12]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[13]  M. Fortin,et al.  Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .

[14]  D. Sandri,et al.  Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .

[15]  Serge Nicaise,et al.  A refined mixed finite element method for the boussinesq equations in polygonal domains , 2001 .

[16]  Mohamed Farhloul,et al.  Analysis of non-singular solutions of a mixed Navier-Stokes formulation , 1996 .

[17]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[18]  Serge Nicaise,et al.  A mixed formulation of Boussinesq equations: Analysis of nonsingular solutions , 2000, Math. Comput..

[19]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[20]  D. Arnold,et al.  A new mixed formulation for elasticity , 1988 .

[21]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .