BBN at TREC7: Using Hidden Markov Models for Information Retrieval
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] W. Bruce Croft,et al. A language modeling approach to information retrieval , 1998, SIGIR '98.
[3] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[4] J. J. Rocchio,et al. Relevance feedback in information retrieval , 1971 .
[5] Richard M. Schwartz,et al. A maximum likelihood model for topic classification of broadcast news , 1997, EUROSPEECH.
[6] V. Rich. Personal communication , 1989, Nature.
[7] Yoram Singer,et al. Boosting and Rocchio applied to text filtering , 1998, SIGIR '98.
[8] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[9] J Makhoul,et al. State of the art in continuous speech recognition. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[10] Richard M. Schwartz,et al. Nymble: a High-Performance Learning Name-finder , 1997, ANLP.
[11] Yoram Singer,et al. Context-sensitive learning methods for text categorization , 1996, SIGIR '96.
[12] D. Metcalf. On Relevance , 1999, Stem cells.
[13] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[14] James Allan,et al. INQUERY Does Battle With TREC-6 , 1997, TREC.
[15] Ellen M. Voorhees,et al. Overview of the Seventh Text REtrieval Conference , 1998 .
[16] M. E. Maron,et al. On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.
[17] W. Bruce Croft,et al. Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.