Matroids, delta-matroids and embedded graphs

Matroid theory is often thought of as a generalization of graph theory. In this paper we propose an analogous correspondence between embedded graphs and delta-matroids. We show that delta-matroids arise as the natural extension of graphic matroids to the setting of embedded graphs. We show that various basic ribbon graph operations and concepts have delta-matroid analogues, and illustrate how the connections between embedded graphs and delta-matroids can be exploited. Also, in direct analogy with the fact that The Tutte polynomial is matroidal, we show that several polynomials of embedded graphs from the literature, including the Las Vergnas, Bollabas-Riordan and Krushkal polynomials, are in fact delta-matroidal.

[1]  Paul D. Seymour,et al.  A note on the production of matroid minors , 1977, J. Comb. Theory, Ser. B.

[2]  Oliver T. Dasbach,et al.  ALTERNATING SUM FORMULAE FOR THE DETERMINANT AND OTHER LINK INVARIANTS , 2006, math/0611025.

[3]  Stephen E. Wilson Operators over regular maps. , 1979 .

[4]  GraphMartin Aigner,et al.  The Penrose Polynomial of a Plane , 1996 .

[5]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[6]  Robert Brijder,et al.  Isotropic Matroids II: Circle Graphs , 2015, Electron. J. Comb..

[7]  Johanna Stromberg,et al.  On the ribbon graphs of links in real projective space , 2015, 1502.02025.

[8]  S. Chmutov Dedicated to Askold Khovanskii on the occasion of his 60th birthday THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE BOLLOBÁS-RIORDAN POLYNOMIAL , 2006 .

[9]  Sang-il Oum,et al.  Circle graph obstructions under pivoting , 2009 .

[10]  Iain Moffatt Knot invariants and the Bollobás-Riordan polynomial of embedded graphs , 2008, Eur. J. Comb..

[11]  Criel Merino,et al.  Graph Polynomials and Their Applications I: The Tutte Polynomial , 2008, Structural Analysis of Complex Networks.

[12]  A. Duchamp Delta matroids whose fundamental graphs are bipartite , 1992 .

[13]  Michel Las Vergnas,et al.  On the Tutte Polynomial of a Morphism of Matroids , 1980 .

[14]  André Bouchet,et al.  Representability of △-matroids over GF(2) , 1991 .

[15]  Iain Moffatt Separability and the genus of a partial dual , 2013, Eur. J. Comb..

[16]  S. Chmutov,et al.  Thistlethwaite's theorem for virtual links , 2007, 0704.1310.

[17]  André Bouchet,et al.  Multimatroids III. Tightness and Fundamental Graphs , 2001, Eur. J. Comb..

[18]  Lorenzo Traldi,et al.  Binary matroids and local complementation , 2013, Eur. J. Comb..

[19]  Joanna A. Ellis-Monaghan,et al.  Twisted duality for embedded graphs , 2009, 0906.5557.

[20]  Sergei Chmutov,et al.  Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial , 2007, J. Comb. Theory, Ser. B.

[21]  André Bouchet,et al.  Maps and Delta-matroids , 1989, Discret. Math..

[22]  Iain Moffatt,et al.  A characterization of partially dual graphs , 2009, J. Graph Theory.

[23]  Hendrik Jan Hoogeboom,et al.  Interlace polynomials for multimatroids and delta-matroids , 2010, Eur. J. Comb..

[24]  Iain Moffatt,et al.  Excluded Minors and the Ribbon Graphs of Knots , 2013, J. Graph Theory.

[25]  S. D. Noble,et al.  On the interplay between embedded graphs and delta‐matroids , 2016, Proceedings of the London Mathematical Society.

[26]  S. Thomas McCormick,et al.  Integer Programming and Combinatorial Optimization , 1996, Lecture Notes in Computer Science.

[27]  Iain Moffatt,et al.  Graphs on Surfaces - Dualities, Polynomials, and Knots , 2013, Springer Briefs in Mathematics.

[28]  Fabien Vignes-Tourneret,et al.  Non-orientable quasi-trees for the Bollobás-Riordan polynomial , 2011, Eur. J. Comb..

[29]  Hendrik Jan Hoogeboom,et al.  Nullity and Loop Complementation for Delta-Matroids , 2010, SIAM J. Discret. Math..

[30]  Sang-il Oum Excluding a bipartite circle graph from line graphs , 2009 .

[31]  Martin Aigner,et al.  The Penrose Polynomial of Binary Matroids , 2000 .

[32]  Lorenzo Traldi,et al.  The transition matroid of a 4-regular graph: An introduction , 2013, Eur. J. Comb..

[33]  Béla Bollobás,et al.  A Polynomial Invariant of Graphs On Orientable Surfaces , 2001 .

[34]  William T. Tutte A Ring in Graph Theory , 1947 .

[35]  Iain Moffatt,et al.  Evaluations of Topological Tutte Polynomials , 2011, Combinatorics, Probability and Computing.

[36]  M. Aigner The Penrose polynomial of a plane graph , 1997 .

[37]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[38]  André Bouchet,et al.  Greedy algorithm and symmetric matroids , 1987, Math. Program..

[39]  Béla Bollobás,et al.  A polynomial of graphs on surfaces , 2002 .

[40]  Iain Moffatt,et al.  Hopf algebras and Tutte polynomials , 2015, Adv. Appl. Math..

[41]  William H. Cunningham,et al.  Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra , 1995, SIAM J. Discret. Math..

[42]  Abhijit Champanerkar,et al.  Quasi‐tree expansion for the Bollobás–Riordan–Tutte polynomial , 2007, 0705.3458.

[43]  V. Rivasseau,et al.  Topological Graph Polynomials and Quantum Field Theory, Part I: Heat Kernel Theories , 2008, 0811.0186.

[44]  Tom Brylawski,et al.  A decomposition for combinatorial geometries , 1972 .

[45]  Steven D. Noble,et al.  Inductive tools for connected delta-matroids and multimatroids , 2017, Eur. J. Comb..

[46]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[47]  T. Krajewski,et al.  Combinatorial Hopf algebras and topological Tutte polynomials , 2015 .

[48]  Clark Butler A quasi-tree expansion of the Krushkal polynomial , 2018, Adv. Appl. Math..

[49]  Werner Schwärzler,et al.  The delta-sum of matching delta-matroids , 1998, Discret. Math..

[50]  Iain Moffatt,et al.  Bipartite partial duals and circuits in medial graphs , 2011, Comb..

[51]  Joanna A. Ellis-Monaghan,et al.  A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan , 2009, Eur. J. Comb..

[52]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[53]  James Oxley,et al.  On the interplay between graphs and matroids , 2005 .

[54]  James F. Geelen,et al.  A Generalization of Tutte's Characterization of Totally Unimodular Matrices , 1997, J. Comb. Theory, Ser. B.

[55]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.

[56]  Graham Farr TUTTE-WHITNEY POLYNOMIALS: SOME HISTORY AND GENERALIZATIONS , 2007 .

[57]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[58]  André Bouchet,et al.  Coverings and Delta-Coverings , 1995, IPCO.

[59]  Vyacheslav Krushkal,et al.  Graphs, Links, and Duality on Surfaces , 2009, Combinatorics, Probability and Computing.

[60]  W. T. Tutte Lectures on matroids , 1965 .

[61]  S. Chmutov,et al.  Polynomial invariants of graphs on surfaces , 2010, 1012.5053.

[62]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[63]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[64]  Pou-Lin Wu,et al.  An Upper Bound on the Number of Edges of a 2-Connected Graph , 1997, Combinatorics, Probability and Computing.

[65]  Bert Gerards,et al.  Structure in minor-closed classes of matroids , 2013, Surveys in Combinatorics.

[66]  Dominic Welsh,et al.  Euler and bipartite matroids , 1969 .

[67]  Lorenzo Traldi,et al.  Binary nullity, Euler circuits and interlace polynomials , 2009, Eur. J. Comb..

[68]  I. Moffatt Partial duals of plane graphs, separability and the graphs of knots , 2010, 1007.4219.

[69]  Iain Moffatt,et al.  A Penrose polynomial for embedded graphs , 2013, Eur. J. Comb..

[70]  W. T. Tutte Connectivity in Matroids , 1966, Canadian Journal of Mathematics.

[71]  F. Jaeger On Transition Polynomials of 4-Regular Graphs , 1990 .

[72]  James G. Oxley,et al.  Matroid theory , 1992 .

[73]  Abraham Lempel,et al.  Cycle Decomposition by Disjoint Transpositions , 1972, J. Comb. Theory, Ser. A.

[74]  Hendrik Jan Hoogeboom,et al.  The group structure of pivot and loop complementation on graphs and set systems , 2011, Eur. J. Comb..

[75]  H. J. Hoogeboom,et al.  Quaternary Bicycle Matroids and the Penrose Polynomial for Delta-Matroids , 2012, 1210.7718.

[76]  I. Pak,et al.  Combinatorial evaluations of the Tutte polynomial , 2003 .

[77]  Satoru Iwata,et al.  The linear delta-matroid parity problem , 2003, J. Comb. Theory, Ser. B.