Kalman filtering using pairwise Gaussian models

An important problem in signal processing consists in recursively estimating an unobservable process x={x/sub n/}/sub n/spl isin/IN/ from an observed process y={y/sub n/}/sub n/spl isin/IN/. This is done classically in the framework of hidden Markov models (HMM). In the linear Gaussian case, the classical recursive solution is given by the well-known Kalman filter. We consider pairwise Gaussian models by assuming that the pair (x, y) is Markovian and Gaussian. We show that this model is strictly more general than the HMM, and yet still enables Kalman-like filtering.

[1]  W. Pieczynski,et al.  Pairwise Markov random fields and segmentation of textured images , 2000 .

[2]  Hisashi Tanizaki,et al.  Nonlinear Filters: Estimation and Applications , 1993 .

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  W. Pieczynski,et al.  Arbres de Markov couple , 2002 .

[5]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[6]  A. Shiryayev,et al.  Statistics of conditionally Gaussian random sequences , 1972 .

[7]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[9]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[10]  Wojciech Pieczynski,et al.  Pairwise Markov Chains , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  C. Zheng,et al.  ; 0 ; , 1951 .

[12]  A. N. Shiryayev,et al.  Conditionally Gaussian Sequences: Filtering and Related Problems , 1978 .

[13]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[14]  Stéphane Derrode,et al.  SAR image segmentation using generalized pairwise Markov chains , 2003, SPIE Remote Sensing.

[15]  P. Caines Linear Stochastic Systems , 1988 .

[16]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[17]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .