The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind

Stochastic heating (SH) is a nonlinear heating mechanism driven by the violation of magnetic moment invariance due to large-amplitude turbulent fluctuations producing diffusion of ions toward higher kinetic energies in the direction perpendicular to the magnetic field. It is frequently invoked as a mechanism responsible for the heating of ions in the solar wind. Here, we quantify for the first time the proton SH rate Q⊥ at radial distances from the Sun as close as 0.16 au, using measurements from the first two Parker Solar Probe encounters. Our results for both the amplitude and radial trend of the heating rate, Q⊥ ∝ r−2.5, agree with previous results based on the Helios data set at heliocentric distances from 0.3 to 0.9 au. Also in agreement with previous results, Q⊥ is significantly larger in the fast solar wind than in the slow solar wind. We identify the tendency in fast solar wind for cuts of the core proton velocity distribution transverse to the magnetic field to exhibit a flattop shape. The observed distribution agrees with previous theoretical predictions for fast solar wind where SH is the dominant heating mechanism.

[1]  D. Stansby,et al.  Highly structured slow solar wind emerging from an equatorial coronal hole , 2019, Nature.

[2]  N. Pogorelov,et al.  Alfvénic velocity spikes and rotational flows in the near-Sun solar wind , 2019, Nature.

[3]  T. Horbury,et al.  Thermodynamics of pure fast solar wind: radial evolution of the temperature–speed relationship in the inner heliosphere , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  B. Chandran,et al.  Reflection-driven magnetohydrodynamic turbulence in the solar atmosphere and solar wind , 2019, Journal of Plasma Physics.

[5]  J. Kasper,et al.  Strong Preferential Ion Heating is Limited to within the Solar Alfvén Surface , 2019, The Astrophysical Journal.

[6]  S. Bourouaine,et al.  Radial Evolution of Stochastic Heating in Low-β Solar Wind , 2019, The Astrophysical Journal.

[7]  S. Bourouaine,et al.  Radial evolution of stochastic heating in low-$\beta$ solar wind , 2019 .

[8]  E. Quataert,et al.  Hybrid-kinetic Simulations of Ion Heating in Alfvénic Turbulence , 2019, The Astrophysical Journal.

[9]  Christopher H. K. Chen,et al.  Scale-dependent Polarization of Solar Wind Velocity Fluctuations at the Inertial and Kinetic Scales , 2019, The Astrophysical Journal.

[10]  P. Isenberg,et al.  Quasilinear Consequences of Turbulent Ion Heating by Magnetic Moment Breaking , 2018, The Astrophysical Journal.

[11]  K. Klein,et al.  The multi-scale nature of the solar wind , 2018, Living Reviews in Solar Physics.

[12]  A. Mallet,et al.  Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- $\unicode[STIX]{x1D6FD}$ plasmas , 2018, Journal of Plasma Physics.

[13]  G. Howes,et al.  Evidence for electron Landau damping in space plasma turbulence , 2018, Nature Communications.

[14]  T. Horbury,et al.  Diagnosing solar wind origins usingin situmeasurements in the inner heliosphere , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  S. Bale,et al.  Interplay between intermittency and dissipation in collisionless plasma turbulence , 2018, Journal of Plasma Physics.

[16]  T. Horbury,et al.  A New Inner Heliosphere Proton Parameter Dataset from the Helios Mission , 2018, Solar Physics.

[17]  W. Matthaeus,et al.  Weakened Magnetization and Onset of Large-scale Turbulence in the Young Solar Wind—Comparisons of Remote Sensing Observations with Simulation , 2018 .

[18]  J. Kasper,et al.  Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence , 2018, 1803.00065.

[19]  J. Kasper,et al.  Nature of Stochastic Ion Heating in the Solar Wind: Testing the Dependence on Plasma Beta and Turbulence Amplitude , 2017, 1711.01508.

[20]  M. Maksimović,et al.  A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun , 2017, 1708.05683.

[21]  G. Howes,et al.  Spatially Localized Particle Energization by Landau Damping in Current Sheets Produced by Strong Alfven Wave Collisions , 2017, 1708.00757.

[22]  G. Howes,et al.  Diagnosing collisionless energy transfer using field–particle correlations: gyrokinetic turbulence , 2017, Journal of Plasma Physics.

[23]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[24]  C. H. Chen,et al.  Recent progress in astrophysical plasma turbulence from solar wind observations , 2016, Journal of Plasma Physics.

[25]  D. Werthimer,et al.  The FIELDS Instrument Suite for Solar Probe Plus , 2016, Space Science Reviews.

[26]  B. Chandran,et al.  EVOLUTION OF THE PROTON VELOCITY DISTRIBUTION DUE TO STOCHASTIC HEATING IN THE NEAR-SUN SOLAR WIND , 2016, 1602.05114.

[27]  John W. Belcher,et al.  Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus , 2015 .

[28]  G. Howes,et al.  A dynamical model of plasma turbulence in the solar wind , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  S. Cranmer,et al.  The role of turbulence in coronal heating and solar wind expansion , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  A. Schekochihin,et al.  Refined critical balance in strong Alfvénic turbulence , 2014, 1406.5658.

[31]  B. Chandran,et al.  DIRECT NUMERICAL SIMULATIONS OF REFLECTION-DRIVEN, REDUCED MAGNETOHYDRODYNAMIC TURBULENCE FROM THE SUN TO THE ALFVÉN CRITICAL POINT , 2013 .

[32]  E. Quataert,et al.  PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE , 2013, 1309.0742.

[33]  W. Dorland,et al.  COLLISIONLESS DAMPING AT ELECTRON SCALES IN SOLAR WIND TURBULENCE , 2013 .

[34]  B. Chandran,et al.  OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-β FAST-SOLAR-WIND STREAMS , 2013, 1307.3789.

[35]  S. Boldyrev,et al.  Nature of subproton scale turbulence in the solar wind. , 2013, Physical review letters.

[36]  M. Velli,et al.  Proton thermal energetics in the solar wind: Helios reloaded , 2013 .

[37]  N. Omidi,et al.  Ion Scattering and Acceleration by Low Frequency Waves in the Cometary Environment , 2013 .

[38]  J. Kasper,et al.  Sensitive test for ion-cyclotron resonant heating in the solar wind. , 2013, Physical review letters.

[39]  M. Maksimović,et al.  ON SPECTRAL BREAKS IN THE POWER SPECTRA OF MAGNETIC FLUCTUATIONS IN FAST SOLAR WIND BETWEEN 0.3 AND 0.9 AU , 2012 .

[40]  Jiansen He,et al.  DO OBLIQUE ALFVÉN/ION-CYCLOTRON OR FAST-MODE/WHISTLER WAVES DOMINATE THE DISSIPATION OF SOLAR WIND TURBULENCE NEAR THE PROTON INERTIAL LENGTH? , 2012 .

[41]  F. Mozer,et al.  IDENTIFICATION OF KINETIC ALFVÉN WAVE TURBULENCE IN THE SOLAR WIND , 2012 .

[42]  E. Quataert,et al.  INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE , 2011, 1110.3029.

[43]  E. Marsch,et al.  Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited , 2011 .

[44]  V. Carbone,et al.  WHERE DOES FLUID-LIKE TURBULENCE BREAK DOWN IN THE SOLAR WIND? , 2010 .

[45]  B. Chandran ALFVÉN-WAVE TURBULENCE AND PERPENDICULAR ION TEMPERATURES IN CORONAL HOLES , 2010, 1006.3473.

[46]  T. Horbury,et al.  Anisotropy of solar wind turbulence between ion and electron scales. , 2010, Physical review letters.

[47]  E. Quataert,et al.  PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE IN THE SOLAR WIND , 2010, 1001.2069.

[48]  A. Almagri,et al.  Mass-dependent ion heating during magnetic reconnection in a laboratory plasma. , 2009, Physical review letters.

[49]  Charles W. Smith,et al.  Statistical Analysis of the High-Frequency Spectral Break of the Solar Wind Turbulence at 1 AU , 2008 .

[50]  W. Dorland,et al.  Kinetic simulations of magnetized turbulence in astrophysical plasmas. , 2007, Physical review letters.

[51]  P. Judge,et al.  Alfvén Waves in the Solar Corona , 2007, Science.

[52]  W. Dorland,et al.  Kinetic and fluid turbulent cascades in magnetized weakly collisional astrophysical plasmas , 2007 .

[53]  S. Galtier Wave turbulence in incompressible Hall magnetohydrodynamics , 2006, Journal of Plasma Physics.

[54]  Adam Szabo,et al.  Physics-based Tests to Identify the Accuracy of Solar Wind Ion Measurements: A Case Study with the Wind Faraday Cups , 2006 .

[55]  William Dorland,et al.  Astrophysical Gyrokinetics: Basic Equations and Linear Theory , 2005, astro-ph/0511812.

[56]  T. Horbury,et al.  Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. , 2005, Physical review letters.

[57]  R. Ergun,et al.  Auroral ion acceleration in dispersive Alfvén waves , 2004 .

[58]  M. Goossens,et al.  Cross-Field Heating of Coronal Ions by Low-Frequency Kinetic Alfvén Waves , 2004 .

[59]  A. Lazarian,et al.  Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications , 2003, astro-ph/0301062.

[60]  J. Johnson,et al.  Stochastic ion heating at the magnetopause due to kinetic Alfvén waves , 2001 .

[61]  Hui Li,et al.  Solar wind magnetic fluctuation spectra: Dispersion versus damping , 2001 .

[62]  R. White,et al.  On Resonant Heating Below the Cyclotron Frequency , 2001 .

[63]  W. Matthaeus,et al.  MHD-driven Kinetic Dissipation in the Solar Wind and Corona , 2000 .

[64]  J. Hollweg,et al.  Cyclotron resonance in coronal holes: 1. Heating and acceleration of protons, , 1999 .

[65]  J. Hollweg,et al.  Cyclotron resonance in coronal holes: 2. A two‐proton description , 1999 .

[66]  P. Dmitruk,et al.  Coronal Heating by Magnetohydrodynamic Turbulence Driven by Reflected Low-Frequency Waves , 1999 .

[67]  S. Fineschi,et al.  An Empirical Model of a Polar Coronal Hole at Solar Minimum , 1999 .

[68]  Giampiero Naletto,et al.  UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona , 1998 .

[69]  E. Quataert Particle Heating by Alfvénic Turbulence in Hot Accretion Flows , 1997, astro-ph/9710127.

[70]  Robert W. Conn,et al.  Stochastic ion behavior in subharmonic and superharmonic electrostatic waves , 1996 .

[71]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[72]  Stern,et al.  Observation of fast stochastic ion heating by drift waves. , 1991, Physical review letters.

[73]  P. Isenberg,et al.  On the preferential acceleration and heating of solar wind heavy ions , 1982 .

[74]  J. Lemaire,et al.  Kinetic models of the solar wind , 1971 .

[75]  L. Davis,et al.  Large-Amplitude Alfvn Waves in the Interplanetary Medium' , 1971 .

[76]  J. Brandt,et al.  A Two-Component Model of the Quiet Solar Wind with Viscosity, Magnetic Field, and Reduced Heat Conduction , 1971 .

[77]  R. Hartle,et al.  Nonthermal heating in the two‐fluid solar wind model , 1970 .

[78]  L. Davis,et al.  Large‐amplitude Alfvén waves in the interplanetary medium: Mariner 5 , 1969 .

[79]  P. Coleman Turbulence, viscosity, and dissipation in the solar-wind plasma , 1968 .

[80]  P. Sturrock,et al.  Two-fluid model of the solar wind. , 1966 .

[81]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[82]  J. E. Moyal XXX. Theory of ionization fluctuations , 1955 .

[83]  S. Woods,et al.  The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. S. 211-215 , 2005 .

[84]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .