The Star Formation Demographics of Galaxies in the Local Volume

We examine the connections between the current global star formation activity, luminosity, dynamical mass, and morphology of galaxies in the Local Volume, using Hα data from the 11 Mpc Hα and Ultraviolet Galaxy Survey (11HUGS). Taking the equivalent width (EW) of the Hα emission line as a tracer of the specific star formation rate, we analyze the distribution of galaxies in the MB-EW and rotational velocity (Vmax)-EW planes. Star-forming galaxies show two characteristic transitions in these planes. A narrowing of the galaxy locus occurs at MB ∼ − 15 and Vmax ∼ 50 km s−1, where the scatter in the logarithmic EWs drops by a factor of 2 as the luminosities/masses increase, and galaxy morphologies shift from predominately irregular to late-type spiral. Another transition occurs at MB ∼ − 19 and Vmax ∼ 120 km s−1, above which the sequence turns off toward lower EWs and becomes mostly populated by intermediate- and early-type bulge-prominent spirals. Between these two transitions, the mean logarithmic EW appears to remain constant at 30 Å. We comment on how these features reflect established empirical relationships, and provide clues for identifying the large-scale physical processes that both drive and regulate star formation, with emphasis on the low-mass galaxies which dominate our approximately volume-limited sample.

[1]  B. Tinsley EVOLUTION OF THE STARS AND GAS IN GALAXIES. , 2022, 2203.02041.

[2]  P. Kroupa,et al.  Converting Hα Luminosities into Star Formation Rates , 2007 .

[3]  G. Stinson,et al.  Breathing in Low-Mass Galaxies: A Study of Episodic Star Formation , 2007, 0705.4494.

[4]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[5]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[6]  J. Moustakas,et al.  An Integrated Spectrophotometric Survey of Nearby Star-forming Galaxies , 2005, astro-ph/0511729.

[7]  P. Kroupa,et al.  The maximum stellar mass, star-cluster formation and composite stellar populations , 2005, astro-ph/0511331.

[8]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[9]  S. McGaugh The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies , 2005, astro-ph/0506750.

[10]  D. Hunter,et al.  Star Formation Properties of a Large Sample of Irregular Galaxies , 2004, astro-ph/0408229.

[11]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[12]  P. Yoachim,et al.  The Formation of Dust Lanes: Implications for Galaxy Evolution , 2004, astro-ph/0402472.

[13]  L. Gouguenheim,et al.  HYPERLEDA - II. The homogenized HI data , 2003 .

[14]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[15]  C. Collins,et al.  The Hα Galaxy Survey ⋆ I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies , 2003, astro-ph/0311030.

[16]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[17]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[18]  D. Garnett The Luminosity-Metallicity Relation, Effective Yields, and Metal Loss in Spiral and Irregular Galaxies , 2002, astro-ph/0209012.

[19]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[20]  L. V. Zee,et al.  The Evolutionary Status of Isolated Dwarf Irregular Galaxies. II. Star Formation Histories and Gas Depletion , 2001, astro-ph/0101135.

[21]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[22]  J. Salzer,et al.  Emission-Line Galaxy Surveys as Probes of the Spatial Distribution of Dwarf Galaxies. I. The University of Michigan Survey , 2000, astro-ph/0001390.

[23]  C. Martin Properties of Galactic Outflows: Measurements of the Feedback from Star Formation , 1998, astro-ph/9810233.

[24]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[25]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[26]  D. Hunter STAR FORMATION IN IRREGULAR GALAXIES: A REVIEW OF SEVERAL KEY QUESTIONS , 1997 .

[27]  P. Papaderos,et al.  Optical structure and star formation in blue compact dwarf galaxies. I. Observations and profile decomposition , 1996 .

[28]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[29]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[30]  L. Schulman,et al.  Theory of dwarf galaxies , 1980 .

[31]  V. Der,et al.  MINNESOTA LECTURES ON EXTRAGALACTIC NEUTRAL HYDROGEN , 1996 .

[32]  M. S. Roberts The Content of Galaxies: Stars and Gas , 1963 .