Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation

[1]  Ansuja Pulickal Mathew,et al.  Metal Oxide Nanoparticles as Versatile Therapeutic Agents Modulating Cell Signaling Pathways: Linking Nanotechnology with Molecular Medicine , 2017 .

[2]  T. Arinzeh,et al.  Enhanced noradrenergic axon regeneration into schwann cell‐filled PVDF‐TrFE conduits after complete spinal cord transection , 2017, Biotechnology and bioengineering.

[3]  X. Qu,et al.  A pH-switched mesoporous nanoreactor for synergetic therapy , 2017, Nano Research.

[4]  Dietmar W. Hutmacher,et al.  Examination of the foreign body response to biomaterials by nonlinear intravital microscopy , 2016, Nature Biomedical Engineering.

[5]  J. D. PÉcora,et al.  Zinc Oxide Nanoparticles Enhance Physicochemical Characteristics of Grossman Sealer. , 2016, Journal of endodontics.

[6]  Sabu Thomas,et al.  Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. , 2016, Materials science & engineering. C, Materials for biological applications.

[7]  Yang Shen,et al.  Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment. , 2016, ACS nano.

[8]  J. Stoltz,et al.  Immunomodulation of endothelial differentiated mesenchymal stromal cells: impact on T and NK cells , 2016, Immunology and cell biology.

[9]  F. Sarry,et al.  Surface Acoustic Wave Device with Reduced Insertion Loss by Electrospinning P(VDF–TrFE)/ZnO Nanocomposites , 2016, Nano-Micro Letters.

[10]  P. Ma,et al.  Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. , 2016, Acta biomaterialia.

[11]  Feilim Mac Gabhann,et al.  Design principles for therapeutic angiogenic materials , 2016 .

[12]  Lai-Hua Xie,et al.  The effect of PVDF‐TrFE scaffolds on stem cell derived cardiovascular cells , 2015, Biotechnology and bioengineering.

[13]  Xian-Jin Yang,et al.  Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging , 2016 .

[14]  V. Kale,et al.  A nano zinc oxide doped electrospun scaffold improves wound healing in a rodent model , 2016 .

[15]  Mengyuan Li,et al.  The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). , 2016, Nature materials.

[16]  A. Duschl,et al.  Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. , 2015, Nanomedicine.

[17]  Nadeem Qaiser,et al.  Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays , 2015, Scientific Reports.

[18]  Dasmawati Mohamad,et al.  Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism , 2015, Nano-Micro Letters.

[19]  K. Zhao,et al.  Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy , 2015, Nano Research.

[20]  Geon-Tae Hwang,et al.  Flexible Piezoelectric Thin‐Film Energy Harvesters and Nanosensors for Biomedical Applications , 2015, Advanced healthcare materials.

[21]  M. Mastrogiacomo,et al.  Transplanted Umbilical Cord Mesenchymal Stem Cells Modify the In Vivo Microenvironment Enhancing Angiogenesis and Leading to Bone Regeneration. , 2015, Stem cells and development.

[22]  Xiaohong Li,et al.  Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation. , 2015, Acta biomaterialia.

[23]  Sabu Thomas,et al.  Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds , 2014 .

[24]  Wan Haliza Abd Majid,et al.  Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators , 2014, Sensors.

[25]  Sabu Thomas,et al.  Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing , 2014 .

[26]  Markus Mohr,et al.  Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting , 2014, Nano Research.

[27]  Sabu Thomas,et al.  Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties , 2014, Journal of Polymer Research.

[28]  Francisco M. Gama,et al.  Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering , 2013 .

[29]  Fabrice Domingues Dos Santos,et al.  Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films , 2013 .

[30]  Mengyuan Li,et al.  Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. , 2013, Nature materials.

[31]  Witold Łojkowski,et al.  Zinc oxide nanoparticles impair the integrity of human umbilical vein endothelial cell monolayer in vitro. , 2012, Journal of biomedical nanotechnology.

[32]  Krishnendu Pal,et al.  Zinc oxide nanoflowers make new blood vessels. , 2012, Nanoscale.

[33]  D. Ying,et al.  Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. , 2012, Colloids and surfaces. B, Biointerfaces.

[34]  T. Arinzeh,et al.  The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. , 2012, Tissue engineering. Part A.

[35]  George Collins,et al.  Neurite extension of primary neurons on electrospun piezoelectric scaffolds. , 2011, Acta biomaterialia.

[36]  Yuh-Jeen Huang,et al.  Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. , 2011, The Science of the total environment.

[37]  Colette Lacabanne,et al.  Structural and electrical properties of gold nanowires/P(VDF-TrFE) nanocomposites , 2010 .

[38]  T. Arinzeh,et al.  Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. , 2010, Acta biomaterialia.

[39]  Deepthy Menon,et al.  Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells , 2009, Journal of materials science. Materials in medicine.

[40]  C. McCaig,et al.  Electrical dimensions in cell science , 2009, Journal of Cell Science.

[41]  Zhanhu Guo,et al.  Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis , 2009 .

[42]  E. Place,et al.  Complexity in biomaterials for tissue engineering. , 2009, Nature materials.

[43]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[44]  L. Yubao,et al.  Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering , 2009, Journal of Biomedical Science.

[45]  Xuehong Lu,et al.  Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[46]  Pooi See Lee,et al.  Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk , 2008 .

[47]  Vladimir Mironov,et al.  Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. , 2008, Trends in biotechnology.

[48]  D. Clarke,et al.  Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[49]  A. Huttenlocher,et al.  Wound healing with electric potential. , 2007, The New England journal of medicine.

[50]  Min Zhao,et al.  Controlling cell behavior electrically: current views and future potential. , 2005, Physiological reviews.

[51]  J. Hubbell,et al.  Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering , 2005, Nature Biotechnology.

[52]  Gerhard Ehninger,et al.  Mesenchymal Stem Cells Can Be Differentiated Into Endothelial Cells In Vitro , 2004, Stem cells.

[53]  Cato T Laurencin,et al.  Electrospun nanofibrous structure: a novel scaffold for tissue engineering. , 2002, Journal of biomedical materials research.

[54]  S. Yudin,et al.  Comparison of aluminum and sodium doped poly(vinylidene fluoride-trifluoroethylene) copolymers by x-ray photoemission spectroscopy , 2001 .

[55]  Haisheng Xu,et al.  Polarization and structural properties of high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer films , 2000 .

[56]  L. M. Torell,et al.  Micro-Raman investigations of PVDF-based proton-conducting membranes , 1999 .

[57]  J. Rabolt,et al.  Curie Transition, Ferroelectric Crystal-Structure, and Ferroelectricity of a VDF/TrFE(75/25) Copolymer .1. The Effect of the Consecutive Annealing in the Ferroelectric State on Curie Transition and Ferroelectric Crystal-Structure , 1994 .

[58]  M. Hoffmann,et al.  Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. , 1994, Environmental science & technology.

[59]  P. Galletti,et al.  Microporous small diameter PVDF-TrFE vascular grafts fabricated by a spray phase inversion technique. , 1992, ASAIO journal.

[60]  R F Valentini,et al.  Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels. , 1991, Biomaterials.

[61]  Masamichi Kobayashi,et al.  Polarized Raman spectra and LO-TO splitting of poly(vinylidene fluoride) crystal form I , 1985 .

[62]  K. Tashiro,et al.  Structural study on ferroelectric phase transition of vinylidene fluoride-trifluoroethylene random copolymers , 1981 .

[63]  P. Baumgarten,et al.  Electrostatic spinning of acrylic microfibers , 1971 .