Rational Krylov methods for functions of matrices with applications to fractional partial differential equations

Abstract In this paper we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical solution of fractional partial differential equations. The numerical experiments on some fractional partial differential equation models confirm that the proposed approach is promising.

[1]  Daniele Bertaccini,et al.  Interpolating preconditioners for the solution of sequence of linear systems , 2016, Comput. Math. Appl..

[3]  Lidia Aceto,et al.  Rational Approximation to the Fractional Laplacian Operator in Reaction-Diffusion Problems , 2016, SIAM J. Sci. Comput..

[4]  Fawang Liu,et al.  A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations , 2014 .

[5]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[6]  Jim Euchner Design , 2014, Catalysis from A to Z.

[7]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[8]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .

[9]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[10]  Valeria Simoncini,et al.  A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..

[11]  Frédéric Gibou,et al.  Solving elliptic problems with discontinuities on irregular domains - the Voronoi Interface Method , 2015, J. Comput. Phys..

[12]  C. Lubich Discretized fractional calculus , 1986 .

[13]  Daniele Bertaccini,et al.  Nonsymmetric Preconditioner Updates in Newton-Krylov Methods for Nonlinear Systems , 2011, SIAM J. Sci. Comput..

[14]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[15]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[16]  Petr N. Vabishchevich Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator , 2017, ArXiv.

[17]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[18]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[19]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[20]  Kathy Driver,et al.  Interlacing of the zeros of Jacobi polynomials with different parameters , 2008, Numerical Algorithms.

[21]  Stefan Güttel,et al.  The RKFIT Algorithm for Nonlinear Rational Approximation , 2017, SIAM J. Sci. Comput..

[22]  James A. Warren,et al.  FiPy: Partial Differential Equations with Python , 2009, Computing in Science & Engineering.

[23]  Lidia Aceto,et al.  Rational approximations to fractional powers of self-adjoint positive operators , 2018, Numerische Mathematik.

[24]  Frédéric Gibou,et al.  A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids , 2013, J. Comput. Phys..

[25]  Lidia Aceto,et al.  Efficient Implementation of Rational Approximations to Fractional Differential Operators , 2017, Journal of Scientific Computing.

[26]  Michel Crouzeix,et al.  Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques , 1980 .

[27]  Igor Moret Rational Lanczos approximations to the matrix square root and related functions , 2009, Numer. Linear Algebra Appl..

[28]  S. Güttel Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .

[29]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[30]  Igor Moret,et al.  Krylov subspace methods for functions of fractional differential operators , 2017, Math. Comput..

[31]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[32]  Dario Bini,et al.  Journal of Computational and Applied Mathematics Solving secular and polynomial equations: A multiprecision algorithm , 2022 .

[33]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[34]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[35]  Axel Ruhe The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices , 1994 .

[36]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[37]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[38]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[39]  Bruno Iannazzo,et al.  A Schur Logarithmic Algorithm for Fractional Powers of Matrices , 2013, SIAM J. Matrix Anal. Appl..