Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering

Abstract Selective laser sintering (SLS), a layered manufacturing technique was explored to process an electrically conductive polymer nanocomposite made of Nylon-12 reinforced with 4 wt% of carbon black. SLS process parameters were optimized in order to maximize the flexural modulus. The porosity and morphology were studied using optical microscopy and scanning electron microscopy (SEM). The crystalline state was characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The electrical conductivity was determined using the four probe technique. Results indicate that carbon black-filled Nylon-12 nanocomposites can be successfully made by SLS. Maximum flexural modulus values of 1750 MPa and 1450 MPa were achieved for the neat polymer and the nanocomposite, respectively. A reduction in the flexural modulus of the nanocomposite is likely due to the formation of a segregated structure in the nanocomposite and a weak polymer–filler interface. The optimized neat polymer and the nanocomposites had average densities of around 97% and 96% relative to full density, respectively. The electrical conductivity of the nanocomposite was approximately 1 × 10−4 S/cm, which is five orders of magnitude higher than that of the neat polymer processed by SLS, and indicates that the onset of percolation behavior occurs below the 4 wt% loading of carbon black.

[1]  R. Crawford,et al.  Solid Freeform Fabrication: A New Direction in Manufacturing , 1997 .

[2]  W. C. Tjiu,et al.  Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites , 2008 .

[3]  J. Cavaillé,et al.  Anomalous percolation transition in carbon black-epoxy composite materials , 1999 .

[4]  R. Harris,et al.  Characterization of selective laser-sintered hydroxyapatite-based biocomposite structures for bone replacement , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Shi Yusheng,et al.  A Nanosilica/Nylon-12 Composite Powder for Selective Laser Sintering , 2009 .

[6]  L. Drzal,et al.  Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets , 2007 .

[7]  J. Frenkel Viscous Flow of Crystalline Bodies under the Action of Surface Tension , 1945 .

[8]  C. Sow,et al.  Sustained laser induced incandescence in carbon nanotubes for rapid localized heating , 2009 .

[9]  Jian Zhang,et al.  Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS , 2006 .

[10]  Duc Truong Pham,et al.  Deterioration of polyamide powder properties in the laser sintering process , 2008 .

[11]  J. Xie Kinetics of the solid‐state polymerization of nylon‐6 , 2002 .

[12]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[13]  T. Ezquerra,et al.  Conductive PE-carbon black composites by elongational flow injection moulding , 1988 .

[14]  Bin Zhang,et al.  Gas sensitive vapor grown carbon nanofiber/polystyrene sensors , 2006 .

[15]  R. Cembrola The relationship of carbon black dispersion to electrical resistivity and vulcanizate physical properties , 1982 .

[16]  Zhi Yang,et al.  Preparation and shear properties of carbon nanotubes/poly(butyl methacrylate) hybrid material , 2008 .

[17]  S. Jana,et al.  Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing , 2007 .

[18]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[19]  S. Schiaffino,et al.  On the theory for the arrest of an advancing molten contact line on a cold solid of the same material , 1997 .

[20]  P. Supaphol,et al.  Mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) nanofibre mats filled with carbon black nanoparticles , 2007 .

[21]  A. Pires,et al.  Selective laser sintering of PA12/HDPE blends: Effect of components on elastic/plastic behavior , 2008 .

[22]  J. M. Kikkawa,et al.  Very Low Conductivity Threshold in Bulk Isotropic Single‐Walled Carbon Nanotube–Epoxy Composites , 2005 .

[23]  P. A. Hartley,et al.  The relevance of powder/liquid wettability to the cohesiveness of carbon black agglomerates , 1986 .

[24]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[25]  Karl Schulte,et al.  Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin , 1997 .

[26]  Petra Pötschke,et al.  Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts , 2008 .

[27]  Haowei Zhang,et al.  Vinyl-carbon nanotubes for composite polymer materials , 2008 .

[28]  S. Howdle,et al.  Laser technologies for fabricating individual implants and matrices for tissue engineering , 2007 .

[29]  T. Childs,et al.  Selective laser sintering of a crystalline and a glass-filled crystalline polymer: Experiments and simulations , 2001 .

[30]  Stephen H. Foulger,et al.  Reduced percolation thresholds of immiscible conductive blends , 1999 .

[31]  Jerry Y. H. Fuh,et al.  Selective Laser Sintering , 2001 .

[32]  Zhong‐Ming Li,et al.  Manipulating the Conductivity of Carbon-Black-Filled Immiscible Polymer Composites by Insulating Nanoparticles , 2008 .

[33]  M. Rong,et al.  Carbon black/polystyrene composites as candidates for gas sensing materials , 2003 .

[34]  A. Morgan,et al.  Flame Retardant Intumescent Polyamide 11-Carbon Nanofiber Nanocomposites: Thermal and Flammability Properties , 2007 .

[35]  J. Vlachopoulos,et al.  Modification of Frenkel's model for sintering , 1997 .

[36]  C. Ramesh Crystalline Transitions in Nylon 12 , 1999 .

[37]  O. Manca,et al.  A comparison between models of thermal fields in laser and electron beam surface processing , 1988 .

[38]  Rahul K Gupta,et al.  Polymeric Nanocomposites: Theory and Practice , 2007 .

[39]  S. Huang,et al.  Selective laser sintering of polyamide-rectorite composite , 2005 .

[40]  C K Chua,et al.  Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. , 2007, Bio-medical materials and engineering.

[41]  Pinar Akcora,et al.  Polymer Crystallization in Nanocomposites: Spatial Reorganization of Nanoparticles , 2009 .

[42]  Sung-Moo Song,et al.  Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers , 2005 .

[43]  E. Sichel,et al.  Carbon black-polymer composites : the physics of electrically conducting composites , 1982 .

[44]  K E Tanner,et al.  Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. , 2008, Journal of biomedical materials research. Part A.

[45]  Xin Sun,et al.  Simulation of the densification of semicrystalline polymer powders during the selective laser sintering process: Application to Nylon 12 , 2008 .

[46]  I. Gibson,et al.  Fusion behavior of TrueFormTM/SiO2 composite powders during selective laser sintering , 2008 .

[47]  James L White,et al.  Crystal structure and morphology of biaxially oriented polyamide 12 films , 2002 .

[48]  S. Gogolewski,et al.  Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam) , 1980 .

[49]  A. Derré,et al.  Thermal conductivity of submicrometre particles : carbon blacks and solid solutions containing C, B and N , 2000 .

[50]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[51]  Young Hee Lee,et al.  Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper , 2005 .

[52]  K. Schulte,et al.  Alternating electric field induced agglomeration of carbon black filled resins , 2002 .

[53]  Julia A. King,et al.  Factorial design approach applied to electrically and thermally conductive nylon 6,6 , 2001 .

[54]  M. Narkis,et al.  Hybrid particulate and fibrous injection molded composites : Carbon black/carbon fiber/polypropylene systems , 2005 .

[55]  Ji-Huan He,et al.  Carbon nanotube‐reinforced polyacrylonitrile nanofibers by vibration‐electrospinning , 2007 .

[56]  Biao Wang,et al.  Fibers from Multi-walled Carbon Nanotube/Polyacrylonitrile Composites , 2005 .

[57]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[58]  Alida Mazzoli,et al.  Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering , 2007 .

[59]  David L. Bourell,et al.  Rapid manufacturing of silicon carbide composites , 2005 .

[60]  J. L. Leite,et al.  The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering , 2009 .

[61]  John F. Muth,et al.  Electrical and mechanical properties of carbon‐black‐filled, electrospun nanocomposite fiber webs , 2007 .

[62]  A. Clare,et al.  Selective laser sintering of barium titanate–polymer composite films , 2008 .

[63]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[64]  K. Schulte,et al.  The interaction of epoxy resin and an additional electrolyte with non-oxidised carbon black in colloidal dispersions , 2001 .

[65]  H. Choi,et al.  Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization. , 2007, Journal of nanoscience and nanotechnology.

[66]  L. Froyen,et al.  Lasers and materials in selective laser sintering , 2002 .

[67]  G. M. Swallowe Mechanical properties and testing of polymers : an a-z reference , 1999 .

[68]  I. Gibson,et al.  Effects of energy density on morphology and properties of selective laser sintered polycarbonate , 1999 .

[69]  B. Ilschner,et al.  Processing-microstructure-property relationships in graded materials , 1996 .

[70]  C. Chan,et al.  Electrical properties of polymer composites prepared by sintering a mixture of carbon black and ultra‐high molecular weight polyethylene powder , 1997 .

[71]  INVESTIGATING DIELECTRIC PROPERTIES OF SINTERED POLYMERS FOR RAPID MANUFACTURING , 2008 .

[72]  M. Narkis,et al.  Conductive polymer blends with low carbon black loading: Polypropylene/polyamide , 1996 .

[73]  L. Flandin,et al.  In situ observation of electric field induced agglomeration of carbon black in epoxy resin , 1998 .

[74]  P. McHugh,et al.  Dependence of mechanical properties of polyamide components on build parameters in the SLS process , 2007 .

[75]  S. Das,et al.  Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering , 2006 .

[76]  Mária Omastová,et al.  Stability of electrical properties of carbon black‐filled rubbers , 2009 .

[77]  D. Bigg An Investigation of the Effect of Carbon Black Structure, Polymer Morphology, and Processing History on the Electrical Conductivity of Carbon‐Black‐Filled Thermoplastics , 1984 .

[78]  S. Nagai,et al.  Thermal conductivities of composites in several types of dispersion systems , 1991 .

[79]  Jan-Chan Huang,et al.  Carbon black filled conducting polymers and polymer blends , 2002 .

[80]  Bin Zhang,et al.  Carbon black filled poly(2-ethylhexyl methacrylate) as a candidate for gas sensing material , 2003 .

[81]  S. Huang,et al.  Experimental Investigation into the Selective Laser Sintering of High-Impact Polystyrene , 2008 .

[82]  Haseung Chung,et al.  Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering , 2008 .

[83]  Terry S. Creasy,et al.  Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite , 2004 .

[84]  Tianxi Liu,et al.  Morphology and melt rheology of nylon 11/clay nanocomposites , 2006 .

[85]  R. Fu,et al.  Conductive carbon black-filled polymethacrylate composites as gas sensing materials: Effect of glass transition temperature , 2008 .

[86]  Chinmay A. Deshmane,et al.  On the fracture characteristics of impact tested high density polyethylene–calcium carbonate nanocomposites , 2007 .

[87]  Michael Schmidt,et al.  Selective laser sintering of PEEK , 2007 .

[88]  C. Grigoropoulos,et al.  Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles , 2007 .

[89]  M. Narkis,et al.  Segregated structures in carbon black-containing immiscible polymer blends: HIPS/LLDPE systems , 1997 .

[90]  Neil Hopkinson,et al.  Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts , 2008 .

[91]  Ozcan Koysuren,et al.  Effect of Composite Preparation Techniques on Electrical and Mechanical Properties and Morphology of Nylon 6 Based Conductive Polymer Composites , 2006 .

[92]  Toshio Kurauchi,et al.  Mechanical properties of nylon 6-clay hybrid , 1993 .

[93]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[94]  Leong Kah Fai,et al.  Rapid Prototyping: Principles and Applications in Manufacturing , 2003 .

[95]  R. Young,et al.  Introduction to Polymers , 1983 .

[96]  R. Landel,et al.  Mechanical Properties of Polymers and Composites , 1993 .

[97]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[98]  L. Drzal,et al.  Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin-Tsai and Tandon-Weng models , 2007 .

[99]  Ana Jiménez-Martín,et al.  Polymer composites prepared by compression molding of a mixture of carbon black and nylon 6 powder , 1999 .

[100]  Kristin L. Wood,et al.  Development of SLS fuel cell current collectors , 2006 .

[101]  Suman Das,et al.  Selective laser sintering process optimization for layered manufacturing of CAPA® 6501 polycaprolactone bone tissue engineering scaffolds , 2006 .

[102]  Yury Gogotsi,et al.  Laser-induced light emission from carbon nanoparticles , 2008 .

[103]  Colleen L Flanagan,et al.  Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. , 2005, Biomaterials.

[104]  M. Narkis,et al.  Electrical and dielectric properties of segregated carbon black–polyethylene systems , 1990 .

[105]  Robert Jones,et al.  Electrospun fibers from poly(methyl methacrylate)/vapor grown carbon nanofibers , 2006 .

[106]  F. Huang,et al.  Effect of Carbon Black Modified with Polyaniline on Resistivity Behavior of Polyethylene/Carbon Black Composites , 2007 .

[107]  T. Ezquerra,et al.  Conductive polyethylene-carbon black composites by elongational-flow injection molding Part 3. Study of the structure and morphology , 1989 .

[108]  D. Kunii,et al.  Studies on effective thermal conductivities in packed beds , 1957 .

[109]  Neil Hopkinson,et al.  Effects of processing on microstructure and properties of SLS Nylon 12 , 2006 .

[110]  S. Kirkpatrick Percolation and Conduction , 1973 .

[111]  H. Zeng,et al.  Light-Induced Incandescence of Single-Walled Carbon Nanotubes , 2008 .

[112]  Guozhang Wu,et al.  Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene , 2006 .

[113]  Abbas A. Dehghani-Sanij,et al.  Carbon based conductive polymer composites , 2007 .

[114]  J. H. Liu,et al.  Rapid Manufacturing Metal Parts by Laser Sintering Admixture of Epoxy Resin/Iron Powders , 2006 .

[115]  Costas P. Grigoropoulos,et al.  Lithography-free high-resolution organic transistor arrays on polymer substrate by low energy selective laser ablation of inkjet-printed nanoparticle film , 2008 .

[116]  T. C. Tszeng,et al.  Thermal analysis of solidification by the temperature recovery method , 1989 .

[117]  T. Ezquerra,et al.  Conductive PE-carbon composites by elongation flow injection moulding , 1988 .