All-frequency relighting of glossy objects

We present a technique for interactive rendering of glossy objects in complex and dynamic lighting environments that captures interreflections and all-frequency shadows. Our system is based on precomputed radiance transfer and separable BRDF approximation. We factor glossy BRDFs using a separable decomposition and keep only a few low-order approximation terms, each consisting of a purely view-dependent and a purely light-dependent component. In the precomputation step, for every vertex, we sample its visibility and compute a direct illumination transport vector corresponding to each BRDF term. We use modern graphics hardware to accelerate this step and further compress the data using a nonlinear wavelet approximation. The direct illumination pass is followed by one or more interreflection passes, each of which gathers compressed transport vectors from the previous pass to produce global illumination transport vectors. To render at run time, we dynamically sample the lighting to produce a light vector, also represented in a wavelet basis. We compute the inner product of the light vector with the precomputed transport vectors, and the results are further combined with the BRDF view-dependent components to produce vertex colors. We describe acceleration of the rendering algorithm using programmable graphics hardware and discuss the limitations and trade-offs imposed by the hardware.

[1]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[2]  Ned Greene,et al.  Environment Mapping and Other Applications of World Projections , 1986, IEEE Computer Graphics and Applications.

[3]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[4]  Peter Shirley,et al.  Steerable illumination textures , 2002, TOGS.

[5]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[6]  Alain Fournier,et al.  Properties of Tabulated Bidirectional Reflectance Distribution Functions , 1997, Graphics Interface.

[7]  Rui Wang,et al.  Eurographics Symposium on Rendering (2004) All-frequency Relighting of Non-diffuse Objects Using Separable Brdf Approximation , 2022 .

[8]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[9]  Alain Fournier,et al.  Separating Reflection Functions for Linear Radiosity , 1995, Rendering Techniques.

[10]  WangRui,et al.  All-frequency relighting of glossy objects , 2006 .

[11]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[12]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[13]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[14]  Laurent Moll,et al.  Efficient image-based methods for rendering soft shadows , 2000, SIGGRAPH.

[15]  Jaakko Lehtinen,et al.  Matrix radiance transfer , 2003, I3D '03.

[16]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[17]  Pieter Peers,et al.  Wavelet Environment matting , 2003, Rendering Techniques.

[18]  Wei-Chao Chen,et al.  Light field mapping: efficient representation and hardware rendering of surface light fields , 2002, SIGGRAPH.

[19]  Rüdiger Westermann,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, SIGGRAPH Courses.

[20]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[21]  Julie Dorsey,et al.  Effic ient Re-rendering of Naturally Illuminated Environments , 1994 .

[22]  Hans-Peter Seidel,et al.  Illuminating micro geometry based on precomputed visibility , 2000, SIGGRAPH.

[23]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[24]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[25]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[26]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[27]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[28]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[29]  Harry Shum,et al.  Eurographics Symposium on Rendering (2004) All-frequency Precomputed Radiance Transfer for Glossy Objects , 2022 .

[30]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[31]  Ares Lagae,et al.  Interactive Rendering with Bidirectional Texture Functions , 2003, Comput. Graph. Forum.

[32]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[33]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[34]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[35]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1976, CACM.

[36]  Pat Hanrahan,et al.  Triple product wavelet integrals for all-frequency relighting , 2004, ACM Trans. Graph..

[37]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[38]  Jan Kautz,et al.  Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics , 2002, Rendering Techniques.

[39]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[40]  Pat Hanrahan,et al.  Frequency space environment map rendering , 2002, SIGGRAPH.

[41]  Jan Kautz,et al.  Approximation of Glossy Reflection with Prefiltered Environment Maps , 2000, Graphics Interface.

[42]  François X. Sillion,et al.  Fast calculation of soft shadow textures using convolution , 1998, SIGGRAPH.

[43]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[44]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[45]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[46]  Donald P. Greenberg,et al.  Design and simulation of opera lighting and projection effects , 1991, SIGGRAPH.

[47]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[48]  David Salesin,et al.  Environment matting and compositing , 1999, SIGGRAPH.