FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE

The purpose of this paper is to develop a fractional white noise calculus and to apply this to markets modeled by (Wick–) Ito type of stochastic differential equations driven by fractional Brownian motion BH(t); 1/2 < H < 1. We show that if we use an Ito type of stochastic integration with respect to BH(t) (as developed in Ref. 8), then the corresponding Ito fractional Black–Scholes market has no arbitrage, contrary to the situation when the pathwise integration is used. Moreover, we prove that our Ito fractional Black–Scholes market is complete and we compute explicitly the price and replicating portfolio of a European option in this market. The results are compared to the classical results based on standard Brownian motion B(t).

[1]  B. Øksendal,et al.  OPTIMAL CONSUMPTION AND PORTFOLIO IN A BLACK–SCHOLES MARKET DRIVEN BY FRACTIONAL BROWNIAN MOTION , 2003 .

[2]  Bernt Øksendal,et al.  White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance , 2000, Finance Stochastics.

[3]  Gopinath Kallianpur,et al.  Arbitrage Opportunities for a Class of Gladyshev Processes , 2000 .

[4]  B. Pasik-Duncan,et al.  Stochastic Calculus for Fractional Brownian Motion I. Theory , 2000, SIAM J. Control. Optim..

[5]  Chaos decomposition of multiple fractional integrals and applications , 1999 .

[6]  I. Norros,et al.  An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions , 1999 .

[7]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[8]  Bernt Øksendal,et al.  Optimal portfolio in a fractional Black & Scholes market , 1999 .

[9]  Alain Le Breton,et al.  Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion , 1998 .

[10]  Yaozhong Hu,et al.  Itô-Wiener Chaos Expansion with Exact Residual and Correlation, Variance Inequalities , 1997 .

[11]  S. Janson Gaussian Hilbert Spaces , 1997 .

[12]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[13]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[14]  G. Gripenberg,et al.  On the prediction of fractional Brownian motion , 1996, Journal of Applied Probability.

[15]  C. C. Heyde,et al.  Itô's formula with respect to fractional Brownian motion and its application , 1996 .

[16]  Bernt Øksendal,et al.  Wick Approximation of Quasilinear Stochastic Differential Equations , 1996 .

[17]  Hui-Hsiung Kuo,et al.  White noise distribution theory , 1996 .

[18]  Jürgen Potthoff,et al.  On a dual pair of spaces of smooth and generalized random variables , 1995 .

[19]  S. J. Lin,et al.  Stochastic analysis of fractional brownian motions , 1995 .

[20]  P. E. Kopp,et al.  Stock Price Returns and the Joseph Effect: A Fractional Version of the Black-Scholes Model , 1995 .

[21]  Ali Süleyman Üstünel,et al.  Stochastic Analysis and Related Topics II , 1993 .

[22]  F. Benth Integrals in The Hida Distribution Space (S) , 1993 .

[23]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[24]  Solution of a class of singular integral equations , 1967 .