Rule weights in a neuro-fuzzy system with a hierarchical domain partition

Rule weights in a neuro-fuzzy system with a hierarchical domain partition The paper discusses the problem of rule weight tuning in neuro-fuzzy systems with parameterized consequences in which rule weights and the activation of the rules are not interchangeable. Some heuristic methods of rule weight computation in neuro-fuzzy systems with a hierarchical input domain partition and parameterized consequences are proposed. Several heuristics with experimental results showing the advantage of their usage are presented.

[1]  Mansoor Zolghadri Jahromi,et al.  A proposed method for learning rule weights in fuzzy rule-based classification systems , 2008, Fuzzy Sets Syst..

[2]  Krzysztof Siminski,et al.  Patchwork Neuro-fuzzy System with Hierarchical Domain Partition , 2009, Computer Recognition Systems 3.

[3]  Krzysztof Siminski,et al.  Remark on Membership Functions in Neuro-Fuzzy Systems , 2009, ICMMI.

[4]  Yinghua Lin,et al.  A new approach to fuzzy-neural system modeling , 1995, IEEE Trans. Fuzzy Syst..

[5]  Kaoru Hirota,et al.  Design of a Modified T-S Fuzzy Model by Adding Compensation-Rules , 2001 .

[6]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  H. Surmann,et al.  Self-Organizing and Genetic Algorithms for an Automatic Design of Fuzzy Control and Decision Systems , 1993 .

[8]  María José del Jesús,et al.  A proposal on reasoning methods in fuzzy rule-based classification systems , 1999, Int. J. Approx. Reason..

[9]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[10]  Yong-Zai Lu,et al.  Fuzzy Model Identification and Self-Learning for Dynamic Systems , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Jacek M. Leski,et al.  Fuzzy and Neuro-Fuzzy Intelligent Systems , 2000, Studies in Fuzziness and Soft Computing.

[12]  Witold Pedrycz,et al.  Distributed fuzzy system modeling , 1995, IEEE Trans. Syst. Man Cybern..

[13]  Marley M. B. R. Vellasco,et al.  Hierarchical neuro-fuzzy quadtree models , 2002, Fuzzy Sets Syst..

[14]  Hans-Heinrich Bothe,et al.  Neuro Fuzzy Systems , 1998, NC.

[15]  Steven C. Wheelwright,et al.  Forecasting methods and applications. , 1979 .

[16]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[17]  Sung-Kwun Oh,et al.  Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems , 2000, Fuzzy Sets Syst..

[18]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[19]  Hisao Ishibuchi,et al.  Effect of rule weights in fuzzy rule-based classification systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[20]  W. Pedrycz,et al.  Construction of fuzzy models through clustering techniques , 1993 .

[21]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[22]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[23]  Jacek M. Leski,et al.  A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications , 1999, Fuzzy Sets Syst..

[24]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[25]  R. A. Rahmat,et al.  GENERATION OF FUZZY RULES WITH SUBTRACTIVE CLUSTERING , 2005 .

[26]  Yu-Geng Xi,et al.  A clustering algorithm for fuzzy model identification , 1998, Fuzzy Sets Syst..

[27]  W. Pedrycz An identification algorithm in fuzzy relational systems , 1984 .

[28]  Hisao Ishibuchi,et al.  Adaptive fuzzy rule-based classification systems , 1996, IEEE Trans. Fuzzy Syst..

[29]  Hisao Ishibuchi,et al.  Determination of rule weights of fuzzy association rules , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[30]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[31]  Piotr Czekalski,et al.  EVOLUTION-FUZZY RULE BASED SYSTEM WITH PARAMETERIZED CONSEQUENCES , 2006 .

[32]  M. Setnes,et al.  Comparision of Two Construction Algorithms for Takagi-Sugeno Fuzzy Models , 1999 .

[33]  Robert Nowicki,et al.  Rough-Neuro-Fuzzy System with MICOG Defuzzification , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[34]  Marley M. B. R. Vellasco,et al.  Load forecasting with the Hierarchical Neuro-Fuzzy Binary Space Partitioning Model , 2002, Int. J. Comput. Syst. Signals.

[35]  Junhong Nie,et al.  Constructing fuzzy model by self-organizing counterpropagation network , 1995, IEEE Trans. Syst. Man Cybern..

[36]  Steven C. Wheelwright,et al.  Forecasting: Methods and Applications, 3rd Ed , 1997 .

[37]  Detlef D. Nauck,et al.  Adaptive Rule Weights in Neuro-Fuzzy Systems , 2000, Neural Computing & Applications.

[38]  Shyh Hwang,et al.  An identification algorithm in fuzzy relational systems , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[39]  Jeen-Shing Wang,et al.  Self-adaptive neuro-fuzzy inference systems for classification applications , 2002, IEEE Trans. Fuzzy Syst..

[40]  K. B. Kim,et al.  Fuzzy system modeling by fuzzy partition and GA hybrid schemes , 1997, Fuzzy Sets Syst..

[41]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[42]  Krzysztof Siminski,et al.  Neuro-Fuzzy System with Hierarchical Domain Partition , 2008, 2008 International Conference on Computational Intelligence for Modelling Control & Automation.

[43]  Hisao Ishibuchi,et al.  Rule weight specification in fuzzy rule-based classification systems , 2005, IEEE Transactions on Fuzzy Systems.

[44]  David E. Ferguson Fibonaccian searching , 1960, CACM.

[45]  O. Nelles,et al.  Basis function networks for interpolation of local linear models , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[46]  J. Rantala,et al.  Optimised Subtractive Clustering for Neuro-Fuzzy Models , 2022 .

[47]  Krzysztof ski,et al.  Two Ways of Domain Partition in Fuzzy Inference System with Parametrized Consequences: Clustering and Hierarchical Split , 2008 .

[48]  Uzay Kaymak,et al.  Fuzzy classification using probability-based rule weighting , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[49]  Antonio F. Gómez-Skarmeta,et al.  About the use of fuzzy clustering techniques for fuzzy model identification , 1999, Fuzzy Sets Syst..

[50]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[51]  E. H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Man Mach. Stud..

[52]  Euntai Kim,et al.  A transformed input-domain approach to fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[53]  Euntai Kim,et al.  A new approach to fuzzy modeling , 1997, IEEE Trans. Fuzzy Syst..

[54]  Rudolf Kruse,et al.  How the learning of rule weights affects the interpretability of fuzzy systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[55]  C. Hwang,et al.  A Combined Approach to Fuzzy Model Identification , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[56]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[57]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[58]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[60]  R. Tong The evaluation of fuzzy models derived from experimental data , 1980 .