Temperature Dependent Performance and In Situ AC Impedance of High-Temperature PEM Fuel Cells Using the Nafion-112 Membrane

In this paper, temperature dependent performance of a Nafion 112-based proton exchange membrane (PEM) fuel cell was investigated at different temperatures, 30 psig back pressure, and 100% relative humidity (RH). High cell performance of ca. 0.637 V at 1.0 A/cm 2 was obtained at 120°C. Cell voltage decreased when the temperature increased within the range of 80-20°C. An in situ ac impedance spectroscopy method under load was developed to diagnose the performance reduction. A semi-empirical treatment was initiated to obtain expressions for extinguishing the individual performance drops caused by reaction kinetics (charge-transfer resistance), membrane resistance, and mass-transfer limitation, respectively.

[1]  G. Lindbergh,et al.  Steady-State and EIS Investigations of Hydrogen Electrodes and Membranes in Polymer Electrolyte Fuel Cells II. Experimental , 2006 .

[2]  D. Wilkinson,et al.  Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities , 2005 .

[3]  James M. Fenton,et al.  Development and demonstration of a higher temperature PEM fuel cell stack , 2005 .

[4]  H. R. Kunz,et al.  High-Performance PEMFCs at Elevated Temperatures Using Nafion 112 Membranes , 2005 .

[5]  J. Diard,et al.  Impedance Measurement of Each Cell of a 10 W PEMFC Stack under Load , 2004 .

[6]  A. Pozio,et al.  Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells , 2004 .

[7]  M. Ciureanu Effects of Nafion® Dehydration in PEM Fuel Cells , 2004 .

[8]  G. Scherer,et al.  Proton-conducting polymer membranes in fuel cells—humidification aspects , 2004 .

[9]  Vijay Ramani,et al.  Investigation of Nafion ® /HPA composite membranes for high temperature/low relative humidity PEMFC operation , 2004 .

[10]  P. Vie,et al.  Influence of Ammonium on Conductivity and Water Content of Nafion 117 Membranes , 2004 .

[11]  T. Abe,et al.  Study of PEFCs by AC Impedance, Current Interrupt, and Dew Point Measurements I. Effect of Humidity in Oxygen Gas , 2004 .

[12]  P. Pickup,et al.  Ionic Conductivity of PEMFC Electrodes Effect of Nafion Loading , 2003 .

[13]  Qingzhi Guo,et al.  Study of Ionic Conductivity Profiles of the Air Cathode of a PEMFC by AC Impedance Spectroscopy , 2003 .

[14]  T. Zawodzinski,et al.  Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells , 2003 .

[15]  L. Klein,et al.  Transport properties of Nafion™ composite membranes for proton-exchange membranes fuel cells , 2003 .

[16]  S. Woo,et al.  Evaluation of the Nafion effect on the activity of Pt–Ru electrocatalysts for the electro-oxidation of methanol , 2003 .

[17]  D. Brett,et al.  Localized Impedance Measurements along a Single Channel of a Solid Polymer Fuel Cell , 2003 .

[18]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[19]  David E. Williams,et al.  Meso‐SiO2–C12EO10OH–CF3SO3H—A Novel Proton‐Conducting Solid Electrolyte , 2003 .

[20]  F. Walsh,et al.  Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes , 2002 .

[21]  B. Andreaus,et al.  Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy , 2002 .

[22]  M. De Francesco,et al.  Comparison of high surface Pt/C catalysts by cyclic voltammetry , 2002 .

[23]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[24]  Paola Costamagna,et al.  Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , 2001 .

[25]  Koichi Kobayashi,et al.  Effect of CO gas and anode-metal loading on H2 oxidation in proton exchange membrane fuel cell , 2001 .

[26]  K. Agbossou,et al.  Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack , 2001 .

[27]  E. Gonzalez,et al.  Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells , 2001 .

[28]  Koichi Kobayashi,et al.  Characterization of CO tolerance of PEMFC by ac impedance spectroscopy , 2001 .

[29]  F. Büchi,et al.  Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells , 2001 .

[30]  J. Song,et al.  Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method , 2001 .

[31]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[32]  N. Wagner,et al.  Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell , 2004 .

[33]  M. Ciureanu,et al.  Electrochemical Impedance Study of Electrode‐Membrane Assemblies in PEM Fuel Cells: I. Electro‐oxidation of H 2 and H 2 / CO Mixtures on Pt‐Based Gas‐Diffusion Electrodes , 1999 .

[34]  S. Cha,et al.  Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface , 1999 .

[35]  Albert Compte,et al.  Anomalous transport effects in the impedance of porous film electrodes , 1999 .

[36]  E. Passalacqua,et al.  Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC , 1999 .

[37]  T. Springer,et al.  Modelistic interpretation of the power response of a polymer electrolyte fuel cell , 1998 .

[38]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[39]  C. Chamberlin,et al.  Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation , 1995 .

[40]  T. Springer Diagnostic Information from AC Impedance Measurements on Polymer Electrolyte Fuel Cells , 1995 .

[41]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[42]  A. Appleby Fuel cells and hydrogen fuel , 1994 .

[43]  I. Raistrick Impedance studies of porous electrodes , 1990 .

[44]  T. E. Springer,et al.  Electrical Impedance of a Pore Wall for the Flooded‐Agglomerate Model of Porous Gas‐Diffusion Electrodes , 1989 .

[45]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[46]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .