The promises and pitfalls of including decadal- scale climate forcing of recruitment in groundfish stock assessment

Concurrent declines in demersal fish stock abundances and shifts in long-term average environmental conditions have been well documented in the Pacific. Management advice ignoring environmental forcing of recruitment may cause stocks to be over- or under-harvested, so it is important to consider including environmental forcing on recruitment in stock assessment models. Simulation testing is used to determine the statistical power of stock assessments to identify long-term, decadal-scale environmental forcing of recruitment and the ability to estimate management reference points when the dura- tion of the fisheries time series is equal to or less than the period of the environmental cycle. Commonly used assessment methods generally lead to lower total type I (incorrectly rejecting the null hypothesis of no environmental impact) and type II (failing to detect an environmental impact when such a relationship exists) error rates. The promise of integrating environ- mental data with decadal-scale variability directly into stock assessments via the stock-recruitment relationship is out- weighed by the pitfall of high type I error rates that are due to fishing-induced stock declines that coincide with directional environmental change. However, the impact of type I errors can be minimized by choosing an appropriate combination of assessment method and reference point estimators. Resume : On a bien etudie les declins des stocks de poissons demersaux et les changements concurrents dans les moyennes a long terme des conditions environnementales dans le Pacifique. Les avis de gestion qui ne tiennent pas compte du forcage environnemental du recrutement peuvent causer une surexploitation ou une sous-exploitation des stocks; il est donc impor- tant de considerer l'inclusion du forcage environnemental dans les modeles d'evaluation des stocks. Des tests de simulation nous servent a determiner la puissance statistique des evaluations de stocks a identifier le forcage environnemental du recru- tement a long terme a l'echelle des decennies, ainsi qu'a estimer les points de reference de gestion, lorsque la duree de la se- rie chronologique des peches est egale ou inferieure a la periode du cycle environnemental. Les methodes d'evaluation couramment utilisees menent generalement a des taux globaux reduits d'erreurs de type I (le rejet incorrect de l'hypothese nulle d'absence d'impact environnemental) et de type II (non detection d'un impact environnemental existant). La possibilite d'integration des donnees environnementales avec une variabilite a l'echelle des decennies directement dans les evaluations de stocks a travers la relation stock-recrutement est contrebalancee par le piege de forts taux d'erreurs de type I qui sont dus aux declins des stocks causes par la peche qui coincident avec des changements environnementaux directionnels. Cepen- dant, l'impact des erreurs de type I peut etre minimise en choisissant une combinaison appropriee de methode d'evaluation et d'estimateurs des points de reference. (Traduit par la Redaction)

[1]  M. Basson,et al.  The importance of environmental factors in the design of management procedures , 1999 .

[2]  R. Methot,et al.  RECENT INCREASED ABUNDANCE AND POTENTIAL PRODUCTIVITY OF PAC1 FIC MACKEREL (SCOMBER JAPONICUS) , 1985 .

[3]  J. Koslow,et al.  Climate variability and marine survival of coho salmon (Oncorhynchus kisutch) in the Oregon production area , 2002 .

[4]  Steven R. Hare,et al.  Inverse Production Regimes: Alaska and West Coast Pacific Salmon , 1999 .

[5]  R. Peterman,et al.  Alternative models of climatic effects on sockeye salmon, Oncorhynchus nerka, productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia , 1996 .

[6]  James R. Irvine,et al.  Land use, fishing, climate change, and the decline of Thompson River, British Columbia, coho salmon , 2000 .

[7]  Carl J. Walters,et al.  Is Research on Environmental Factors Useful to Fisheries Management , 1988 .

[8]  P. Harrison,et al.  A Relationship between Fraser River Discharge and Interannual Production of Pacific Salmon (Oncorhynchus spp.) and Pacific herring (Clupea pallasi) in the Strait of Georgia , 1994 .

[9]  R. Brodeur,et al.  Long-term variability in zooplankton biomass in the subarctic Pacific Ocean , 1992 .

[10]  N. Mantua,et al.  The Pacific Decadal Oscillation , 2002 .

[11]  Anthony D. M. Smith,et al.  Implementing effective fisheries-management systems – management strategy evaluation and the Australian partnership approach , 1999 .

[12]  A. Punt,et al.  Evaluating the estimation of fishery management reference points in a variable environment , 2009 .

[13]  André E. Punt,et al.  Incorporating climate information into rebuilding plans for overfished groundfish species of the U.S. west coast. , 2009 .

[14]  P. Sutton,et al.  Links between climate and recruitment of New Zealand hoki (Macruronus novaezelandiae) now unclear , 2006 .

[15]  J. Ianelli,et al.  Eastern Bering Sea Walleye Pollock Stock Assessment , 2002 .

[16]  R. Beamish,et al.  Climate change and northern fish populations , 1995 .

[17]  W. Venables,et al.  Management strategies for short lived species: The case of Australia's Northern Prawn Fishery 3. Factors affecting management and estimation performance , 2006 .

[18]  M. Maunder,et al.  A general framework for integrating environmental time series into stock assessment models: model description, simulation testing, and example , 2003 .

[19]  R.I.C. Chris Francis,et al.  Measuring the strength of environment–recruitment relationships: the importance of including predictor screening within cross-validations , 2006 .

[20]  André E. Punt,et al.  Design of operational management strategies for achieving fishery ecosystem objectives , 2000 .

[21]  Randall M. Peterman,et al.  Spatial correlation patterns in coastal environmental variables and survival rates of salmon in the north‐east Pacific Ocean , 2002 .

[22]  André E. Punt,et al.  The evaluation of two management strategies for the Gulf of Alaska walleye pollock fishery under climate change , 2009 .

[23]  Terrance J. Quinn,et al.  Quantitative Fish Dynamics , 1999 .

[24]  David R. Anderson,et al.  Model selection and inference : a practical information-theoretic approach , 2000 .

[25]  A. Hollowed,et al.  Marine fisheries stock assessment improvement plan : report of the National Marine Fisheries Service, National Task Force for improving fish stock assessments , 2001 .

[26]  P. Levin Regional differences in responses of chinook salmon populations to large‐scale climatic patterns , 2003 .

[27]  A. Punt,et al.  Stock Assessment of Petrale Sole: 2004 , 2005 .

[28]  David B. Sampson,et al.  Bias and Precision of Estimates from an Age-Structured Stock Assessment Program in Relation to Stock and Data Characteristics , 2004 .

[29]  A. Hollowed,et al.  Patterns in Recruitment of Marine Fishes in the Northeast Pacific Ocean , 2013 .

[30]  Larry D. Jacobson,et al.  Stock-recruitment models for Pacific sardine (Sardinops sagax) , 1995 .

[31]  Ransom A. Myers,et al.  When Do Environment–recruitment Correlations Work? , 1998, Reviews in Fish Biology and Fisheries.

[32]  A. Hobday,et al.  Detecting climate impacts with oceanic fish and fisheries data , 2013, Climatic Change.

[33]  David R. Anderson,et al.  Model Selection and Inference: A Practical Information-Theoretic Approach , 2001 .

[34]  André E. Punt,et al.  Evaluating alternative estimators of fishery management reference points , 2008 .

[35]  P. Sullivan,et al.  Decadal changes in growth and recruitment of Pacific halibut (Hippoglossus stenolepis) , 1999 .

[36]  J. De Oliveira,et al.  Limits to the use of environmental indices to reduce risk and/or increase yield in the South African anchovy fishery , 2005 .

[37]  U. Varanasi,et al.  PACIFIC FISHERY MANAGEMENT COUNCIL , 2002 .

[38]  A. Hollowed,et al.  Pacific Basin climate variability and patterns of Northeast Pacific marine fish production , 2001 .

[39]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[40]  C. Walters,et al.  Quantitative fisheries stock assessment: Choice, dynamics and uncertainty , 2004, Reviews in Fish Biology and Fisheries.

[41]  R. Brodeur,et al.  Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem , 1992 .