Ion transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock

Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br− at 90 °C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. X-ray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 612–622

[1]  Kenneth P. Mineart,et al.  A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies , 2016 .

[2]  Chulsung Bae,et al.  Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers , 2015 .

[3]  A. Herring,et al.  Polyethylene-Based Block Copolymers for Anion Exchange Membranes , 2015 .

[4]  A. Shi,et al.  Self-Assembly of Linear ABCBA Pentablock Terpolymers , 2015 .

[5]  K. Winey,et al.  Bromide and Hydroxide Conductivity–Morphology Relationships in Polymerized Ionic Liquid Block Copolymers , 2015 .

[6]  Yating Yang,et al.  Poly(2,6-dimethyl-1,4-phenylene oxide)-b-poly(vinylbenzyltrimethylammonium) Diblock Copolymers for Highly Conductive Anion Exchange Membranes , 2015 .

[7]  Sabu Thomas,et al.  Oil-spill cleanup: The influence of acetylated curaua fibers on the oil-removal capability of magnetic composites , 2015 .

[8]  Daniel C. Herbst,et al.  Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels. , 2015, The Journal of chemical physics.

[9]  Benjamin R. Caire,et al.  Durability and performance of polystyrene-b-poly(vinylbenzyl trimethylammonium) diblock copolymer and equivalent blend anion exchange membranes , 2015 .

[10]  Kenneth P. Mineart,et al.  Morphological investigation of midblock-sulfonated block ionomers prepared from solvents differing in polarity. , 2015, Macromolecular rapid communications.

[11]  A. Herring,et al.  Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers , 2015 .

[12]  Benjamin R. Caire,et al.  Mechanical testing of small, thin samples in a humidity-controlled oven , 2015, Rheologica Acta.

[13]  N. Balsara,et al.  High Anion Conductivity and Low Water Uptake of Phosphonium Containing Diblock Copolymer Membranes , 2014 .

[14]  Plamen Atanassov,et al.  Anion-exchange membranes in electrochemical energy systems , 2014 .

[15]  C. Cornelius,et al.  Structure, physical properties, and molecule transport of gas, liquid, and ions within a pentablock copolymer , 2014 .

[16]  K. Kreuer,et al.  Hydroxide, halide and water transport in a model anion exchange membrane , 2014 .

[17]  B. A. Garetz,et al.  Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte , 2014 .

[18]  Monica Olvera de la Cruz,et al.  Electrostatic control of block copolymer morphology. , 2014, Nature materials.

[19]  Rachel A. Segalman,et al.  Material requirements for membrane separators in a water-splitting photoelectrochemical cell , 2014 .

[20]  M. Hickner,et al.  Low-temperature crosslinking of anion exchange membranes , 2014 .

[21]  M. Hickner,et al.  Anion Exchange Fuel Cell Membranes Prepared from C–H Borylation and Suzuki Coupling Reactions , 2014 .

[22]  Qingqing Miao,et al.  Hydroxide-conducting polymer electrolyte membranes from aromatic ABA triblock copolymers , 2014 .

[23]  Nanwen Li,et al.  Ion Transport by Nanochannels in Ion-Containing Aromatic Copolymers , 2014 .

[24]  J. Lai,et al.  Anion exchange membranes based on novel quaternized block copolymers for alkaline direct methanol fuel cells , 2014 .

[25]  Yifan Li,et al.  Poly(phenylene oxide) copolymer anion exchange membranes , 2013 .

[26]  Michael A. Hickner,et al.  Anion exchange membranes: Current status and moving forward , 2013 .

[27]  M. Liberatore,et al.  Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells , 2013 .

[28]  Aaron C. Jackson,et al.  Bicontinuous Alkaline Fuel Cell Membranes from Strongly Self-Segregating Block Copolymers , 2013 .

[29]  Karen I. Winey,et al.  High Hydroxide Conductivity in Polymerized Ionic Liquid Block Copolymers. , 2013, ACS macro letters.

[30]  K. Winey,et al.  Effects of neutralization with Et3Al on structure and properties in sulfonated styrenic pentablock copolymers , 2013 .

[31]  Monojoy Goswami,et al.  Morphologies of ABC triblock terpolymer melts containing poly(cyclohexadiene): effects of conformational asymmetry. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[32]  M. Hickner,et al.  Ion Motion in Anion and Proton-Conducting Triblock Copolymers , 2013 .

[33]  James L. Horan,et al.  A Small-Angle X-ray Scattering Study of the Development of Morphology in Films Formed from the 3M Perfluorinated Sulfonic Acid Ionomer , 2012 .

[34]  C. M. Bates,et al.  Multiblock Polymers: Panacea or Pandora’s Box? , 2012, Science.

[35]  James L. Horan,et al.  A Hybrid Organic/Inorganic Ionomer from the Copolymerization of Vinylphosphonic Acid and Zirconium Vinylphosphonate , 2012 .

[36]  Gregory N Tew,et al.  Metal-cation-based anion exchange membranes. , 2012, Journal of the American Chemical Society.

[37]  Robert B. Moore,et al.  Phosphonium-Containing ABA Triblock Copolymers: Controlled Free Radical Polymerization of Phosphonium Ionic Liquids , 2011 .

[38]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[39]  Andrew L. Schmitt,et al.  Effect of Nanoscale Morphology on the Conductivity of Polymerized Ionic Liquid Block Copolymers , 2011 .

[40]  K. Winey,et al.  Structure–property relationship in sulfonated pentablock copolymers , 2011 .

[41]  Y. Elabd,et al.  Block Copolymers for Fuel Cells , 2011 .

[42]  Jamie M. Messman,et al.  Tunable morphologies from charged block copolymers , 2010 .

[43]  B. Freeman,et al.  Characterization of a sulfonated pentablock copolymer for desalination applications , 2010 .

[44]  Timothy J. Peckham,et al.  Structure‐Morphology‐Property Relationships of Non‐Perfluorinated Proton‐Conducting Membranes , 2010, Advanced materials.

[45]  Benny D. Freeman,et al.  Water Purification by Membranes: The Role of Polymer Science , 2010 .

[46]  K. Winey,et al.  Micellar Morphology in Sulfonated Pentablock Copolymer Solutions , 2010 .

[47]  A. Zhu,et al.  Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells , 2010 .

[48]  Paul F. Mutolo,et al.  Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. , 2010, Journal of the American Chemical Society.

[49]  Michael A. Hickner,et al.  Anion Exchange Membranes by Bromination of Benzylmethyl-Containing Poly(sulfone)s , 2010 .

[50]  Moon Jeong Park,et al.  Anisotropic Proton Conduction in Aligned Block Copolymer Electrolyte Membranes at Equilibrium with Humid Air , 2010 .

[51]  Cy H. Fujimoto,et al.  Transport Properties of Hydroxide and Proton Conducting Membranes , 2008 .

[52]  R. Slade,et al.  Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells , 2005 .

[53]  M. Sentmanat Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior , 2004 .

[54]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[55]  Tara P. Pandey,et al.  Accelerated Mechanical Degradation of Anion Exchange Membranes via Hydration Cycling , 2016 .

[56]  Zhang Jiang,et al.  Mechanical and microstructural characterization of sulfonated pentablock copolymer membranes , 2015 .

[57]  Benny D. Freeman,et al.  Fundamental water and salt transport properties of polymeric materials , 2014 .

[58]  John R. Varcoe,et al.  Mechanical Characterization of Anion Exchange Membranes by Extensional Rheology under Controlled Hydration , 2014 .

[59]  K. Winey,et al.  Transport Properties of Sulfonated Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities , 2006 .