Kernel Density Estimates of Linear Home Ranges for Stream Fishes: Advantages and Data Requirements

Abstract Kernel density estimates of linear home range can increase the information content of the home range estimate. Particularly in lotic systems, univariate kernel density estimates have desirable properties relative to simple reporting of linear ranges. Kernel density estimates are calculated from a set of relocation points (i.e., radiotelemetry contacts) that can be interpreted as a utilization distribution (UD). The UD estimates the amount of time spent at a given point within the home range. The amount of time that elapses between relocations (sampling interval), total number of relocations (sample size), and bandwidth (smoothing applied to the estimate) are important considerations when using kernel density estimates. Monte Carlo simulations using unimodal and bimodal distributions sampled randomly at sample sizes of 10-100 and three automated bandwidth selection procedures (simple normal reference, Silverman's rule of thumb, and Sheather-Jones plug-in) suggested that at sample sizes of 30 or mo...

[1]  W. V. Winkle COMPARISON OF SEVERAL PROBABILISTIC HOME-RANGE MODELS' , 1975 .

[2]  Michael A. Larson Appendix A – A Catalog of Software to Analyze Radiotelemetry Data , 2001 .

[3]  B. Worton Kernel methods for estimating the utilization distribution in home-range studies , 1989 .

[4]  R. Powell,et al.  An Evaluation of the Accuracy of Kernel Density Estimators for Home Range Analysis , 1996 .

[5]  Michael K. Young,et al.  Restricted movement in resident stream salmonids : a paradigm lost ? , 1994 .

[6]  C. Loader Bandwidth selection: classical or plug-in? , 1999 .

[7]  B. Worton Using Monte Carlo simulation to evaluate kernel-based home range estimators , 1995 .

[8]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[9]  Timothy D. Reynolds,et al.  Time intervals for estimating pronghorn and coyote home ranges and daily movements , 1990 .

[10]  B. J. Worton,et al.  A review of models of home range for animal movement , 1987 .

[11]  Edward O. Garton,et al.  Experimental Design for Radiotelemetry Studies , 2001 .

[12]  Beat Naef-Daenzer,et al.  A new transmitter for small animals and enhanced methods of home-range analysis , 1993 .

[13]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[14]  Norman A. Slade,et al.  Influence of sampling interval on estimates of home-range size , 1985 .

[15]  Joshua J. Millspaugh,et al.  Elk and hunter space-use sharing in South Dakota. , 2000 .

[16]  S. Gerking Evidence for the Concepts of Home Range and Territory in Stream Fishes , 1953 .

[17]  Norman A. Slade,et al.  Testing For Independence of Observations in Animal Movements , 1985 .

[18]  Gary C. White,et al.  Analysis of Wildlife Radio-Tracking Data , 1990 .

[19]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[20]  Joshua J. Millspaugh,et al.  Effects of sample size on kernel home range estimates , 1999 .

[21]  Gary C. White,et al.  Autocorrelation of location estimates and the analysis of radiotracking data , 1999 .

[22]  F. Bunnell,et al.  Characterizing independence of observations in movements of columbian black-tailed deer , 1994 .

[23]  Rolf A. Ims,et al.  Effects of spatiotemporal scale on autocorrelation and home range estimators , 1997 .

[24]  Robert A. Gitzen,et al.  Analysis of Animal Space Use and Movements , 2001 .

[25]  R. Swihart On testing for independence of animal movements , 1997 .

[26]  D. Naugle,et al.  Use of an adaptive kernel home-range estimator in a GIS environment to calculate habitat use , 1998 .

[27]  J. Marron Automatic smoothing parameter selection: A survey , 1988 .