Design and Identification Problems of Rotor Bearing Systems Using the Simulated Annealing Algorithm

© 2012 Lobato et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Design and Identification Problems of Rotor Bearing Systems Using the Simulated Annealing Algorithm

[1]  R. Everson,et al.  Dominance-Based Multi-Objective Simulated Annealing , 2008 .

[2]  C. Fritzen,et al.  Identification Procedures as Tools for Fault Diagnosisof Rotating Machinery , 1995 .

[3]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[4]  Rahul B. Kasat,et al.  Multiobjective Optimization of Industrial FCC Units Using Elitist Nondominated Sorting Genetic Algorithm , 2002 .

[5]  Masayuki Yamamura,et al.  A Genetic Algorithm for Function Optimization , 2002 .

[6]  Bo-Suk Yang,et al.  Bearing parameter identification of rotor–bearing system using clustering-based hybrid evolutionary algorithm , 2007 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[9]  P. Serafini Mathematics of multi objective optimization , 1985 .

[10]  Rajiv Tiwari,et al.  Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor-bearing systems , 2006 .

[11]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[12]  Arthur W. Lees,et al.  EXPERIMENTAL IDENTIFICATION OF EXCITATION AND SUPPORT PARAMETERS OF A FLEXIBLE ROTOR-BEARINGS-FOUNDATION SYSTEM FROM A SINGLE RUN-DOWN , 2000 .

[13]  Hamit Saruhan DESIGN OPTIMIZATION OF ROTOR-BEARING SYSTEMS , 2011 .

[14]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[15]  Michel Lalanne,et al.  Rotordynamics prediction in engineering , 1998 .

[16]  E. Marcoulaki,et al.  A dynamic screening algorithm for multiple objective simulated annealing optimization , 2010 .

[17]  An-Chen Lee,et al.  Estimation of linearized dynamic characteristics of bearings using synchronous response , 1995 .

[18]  A. S. Sekhar,et al.  Identification of unbalance in a rotor bearing system , 2011 .

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  C. McDiarmid SIMULATED ANNEALING AND BOLTZMANN MACHINES A Stochastic Approach to Combinatorial Optimization and Neural Computing , 1991 .

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[23]  J. R. Chang,et al.  Multi-objective Optimization of Rotor-Bearing System With Critical Speed Constraints , 1993 .

[24]  Chris Murphy,et al.  Dominance-Based Multiobjective Simulated Annealing , 2008, IEEE Transactions on Evolutionary Computation.

[25]  Liangsheng Qu,et al.  THE OPTIMIZATION TECHNIQUE-BASED BALANCING OF FLEXIBLE ROTORS WITHOUT TEST RUNS , 2000 .

[26]  D. Draper,et al.  Stochastic Optimization: a Review , 2002 .

[27]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[28]  J. Der Hagopian,et al.  On the balancing of flexible rotating machines by using an inverse problem approach , 2011 .

[29]  Keith A. Seffen,et al.  A SIMULATED ANNEALING ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION , 2000 .

[30]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[31]  R. Chibante,et al.  Parameter Identification of Power Semiconductor Device Models Using Metaheuristics , 2010 .

[32]  Torsten Söderström,et al.  Unbalance estimation using linear and nonlinear regression , 2010, Autom..

[33]  A. Vasan,et al.  Comparative analysis of Simulated Annealing, Simulated Quenching and Genetic Algorithms for optimal reservoir operation , 2009, Appl. Soft Comput..

[34]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[35]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[36]  V. Steffen,et al.  Inverse Problem Techniques for the Identification of Rotor-Bearing Systems , 2003 .

[37]  Marcos de Sales Guerra Tsuzuki Simulated Annealing - Single and Multiple Objective Problems , 2012 .