New results on pseudosquare avoidance
暂无分享,去创建一个
Jeffrey Shallit | Narad Rampersad | Pascal Ochem | Tim Ng | J. Shallit | Tim Ng | Pascal Ochem | N. Rampersad
[1] Leonid A. Levin,et al. Complex tilings , 2001, STOC '01.
[2] Aldo de Luca,et al. Finiteness and Iteration Conditions for Semigroups , 1991, Theor. Comput. Sci..
[3] Francine Blanchet-Sadri,et al. Avoiding large squares in partial words , 2011, Theor. Comput. Sci..
[4] Joseph S. Miller. Two notes on subshifts , 2012 .
[5] Maxime Crochemore,et al. Fewest repetitions in infinite binary words , 2012, RAIRO Theor. Informatics Appl..
[6] Zhi Xu,et al. Pseudopower Avoidance , 2012, Fundam. Informaticae.
[7] Antonio Restivo,et al. Anti-Powers in Infinite Words , 2016, ICALP.
[8] Maxim Ushakov,et al. Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences , 2006, STACS.
[9] R. C. ENTRINGER,et al. On Nonrepetitive Sequences , 1974, J. Comb. Theory, Ser. A.
[10] Dana Angluin,et al. Finding Patterns Common to a Set of Strings , 1980, J. Comput. Syst. Sci..
[11] Tero Harju,et al. Binary Words with Few Squares , 2006, Bull. EATCS.
[12] Jeffrey Shallit,et al. Avoiding large squares in infinite binary words , 2003, Theor. Comput. Sci..
[13] Pascal Ochem,et al. A generator of morphisms for infinite words , 2006, RAIRO Theor. Informatics Appl..
[14] Andrzej Ehrenfeucht,et al. Finding a Homomorphism Between Two Words is NP-Complete , 1979, Inf. Process. Lett..
[15] Hamoon Mousavi,et al. Automatic Theorem Proving in Walnut , 2016, ArXiv.
[16] Aviezri S. Fraenkel,et al. How Many Squares Must a Binary Sequence Contain? , 1997, Electron. J. Comb..
[17] Lucian Ilie,et al. A generalization of repetition threshold , 2003, Theor. Comput. Sci..