First and Second-Order Accurate Schemes for Two-Fluid Models
暂无分享,去创建一个
[1] Victor H. Ransom,et al. Stability, accuracy, and convergence of the numerical methods in RELAP3/MOD3 , 1994 .
[2] Borut Mavko,et al. 20. RELAP5 critical flow model assessment , 1994 .
[3] Christoph W. Ueberhuber,et al. Numerical Computation 2 , 1997 .
[4] Victor H. Ransom,et al. A CHOKED-FLOW CALCULATION CRITERION FOR NONHOMOGENEOUS, NONEQUILIBRIUM, TWO-PHASE FLOWS , 1982 .
[5] A. R. Edwards,et al. STUDIES OF PHENOMENA CONNECTED WITH THE DEPRESSURIZATION OF WATER REACTORS. , 1970 .
[6] Stojan Petelin,et al. Modelling of Two-Phase Flow with Second-Order Accurate Scheme , 1997 .
[7] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[8] Richard B. Pember,et al. Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..
[9] M. Kazimi,et al. Effects of virtual mass on the mathematical characteristics and numerical stability of the two-fluid model , 1985 .
[10] R. Abgrall. How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .
[11] Brian T. Smith,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[12] Angus R. Simpson,et al. Closure of "Large Water-Hammer Pressures for Column Separation in Pipelines" , 1991 .
[13] R. LeVeque. Numerical methods for conservation laws , 1990 .
[14] Thierry Gallouët,et al. Un schéma de Godunov approché , 1996 .
[15] Ivo Kljenak,et al. Space-time evolution of the nonhomogeneous bubble distribution in upward flow , 1993 .
[16] R. LeVeque. Scalar Conservation Laws , 1992 .