A damage mechanics approach to the three dimensional constitutive modelling of ice deformation

Uncertainties in existing ice models come primarily from the incomplete modelling of the deformation behavior of ice in various loading states. In this study constitutive equations characterizing microcrack damage behavior of polycrystalline ice are developed based on continuum damage mechanics. The principal goal of the thesis is the formulation of a three dimensional damage model for the description of ice deformation, where damage evolution is formulated on the basis of a mathematical description of the physical aspects of microcracking. The specific objectives include: 1)Development of rate-dependent constitutive equations describing ice deformation for uniaxial and multiaxial stress states. Total strain is composed of three components, instantaneous elastic, delayed elastic and viscous strain. Each strain component is incorporated with material damage growth through a damage parameter. The mathematical nature of damage parameter is selected as a tensor based on the anisotropic behavior of microcrack fields. 2)Development of a physically based damage model associated with two microcracking mechanisms, grain boundary and transgranular cracking. The main contribution of the thesis lies in the formulation of damage evolution laws where the damage growth rate is expressed by resolved normal strain, normal stress, and strain-rate for each damage mechanism. Applications are directed to constant stress and constant strain-rate tests under uniaxial, biaxial, and confining pressure conditions. Cyclic behavior is also examined. The constitutive modelling is compared with available experimental results. The model is capable of predicting several important features of ice deformation behavior over a wide range of deformation regimes. The difference in tensile and compressive behavior and damage induced anisotropy can be predicted.

[1]  S. Murakami,et al.  Mechanical Modeling of Material Damage , 1988 .

[2]  S. R. Bodner,et al.  Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials , 1975 .

[3]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[4]  Dusan Krajcinovic,et al.  Continuous Damage Mechanics Revisited: Basic Concepts and Definitions , 1985 .

[5]  E. Schulson,et al.  The Strength and Ductility of Ice Under Tension , 1988 .

[6]  David M. Cole,et al.  Deformation and failure of ice under constant stress or constant strain-rate , 1982 .

[7]  Dusan Krajcinovic,et al.  Mechanics of Solids with a Progressively Deteriorating Structure , 1985 .

[8]  F. A. Leckie,et al.  Creep problems in structural members , 1969 .

[9]  Y. S. Wang A Rate-Dependent Stress-Strain Relationship for Sea Ice , 1983 .

[10]  Nicholas J. Burt,et al.  Progressive Failure in a Model Heterogeneous Medium , 1977 .

[11]  J. Chaboche,et al.  A Non-Linear Model of Creep-Fatigue Damage Cumulation and Interaction , 1975 .

[12]  A. Levy A Physically Based Constitutive Equation for Creep-Damaging Solids , 1985 .

[13]  L. W. Gold SOME OBSERVATIONS ON THE DEPENDENCE OF STRAIN ON STRESS FOR ICE , 1958 .

[14]  J. Chaboche,et al.  Le Concept de Contrainte Effective Appliqué à l’Élasticité et à la Viscoplasticité en Présence d’un Endommagement Anisotrope , 1982 .

[15]  Dusan Krajcinovic,et al.  Distributed Damage Theory of Beams in Pure Bending , 1979 .

[16]  N. K. Sinha,et al.  Grain boundary sliding in polycrystalline materials , 1979 .

[17]  S. Chakrabarti,et al.  On the formulation of constitutive equations , 1969 .

[18]  H. Broberg A New Criterion for Brittle Creep Rupture , 1974 .

[19]  Garry Timco,et al.  An investigation of the failure envelope of granular/discontinuous-columnar sea ice , 1984 .

[20]  L. W. Gold,et al.  The failure process in columnar-grained ice , 1972 .

[21]  Chandrakant S. Desai,et al.  Constitutive laws for engineering materials, with emphasis on geologic materials , 1984 .

[22]  A. Verma,et al.  The influence of stress state on creep resistance: Experiments and modelling , 1981 .

[23]  D. Legendre,et al.  Damage and fracture mechanics for concrete (a combined approach) , 1984 .

[24]  C. S. Hartley,et al.  Constitutive Equations in Plasticity , 1977 .

[25]  Sumio Murakami,et al.  A Continuum Theory of Creep and Creep Damage , 1981 .

[26]  S. R. Bodner,et al.  Modeling of continuum damage for application in elastic-viscoplastic constitutive equations , 1986 .

[27]  Frederick A. Leckie,et al.  Tensorial Nature of Damage Measuring Internal Variables , 1981 .

[28]  T. H. Jacka,et al.  Ice crystallographic and strain rate changes with strain in compression and extension , 1984 .

[29]  D. Cole Effect of Grain Size on the Internal Fracturing of Polycrystalline Ice , 1986 .

[30]  Garry Timco,et al.  Confined compression tests: Outlining the failure envelope of columnar sea ice , 1986 .

[31]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[32]  J. Hult Creep in Continua and Structures , 1974 .

[33]  M. Kachanov ON A CONTINUUM MODELLING OF DAMAGE , 1985 .

[34]  O. W. Dillon,et al.  Thermodynamics of Elastic‐Plastic Materials as a Theory with Internal State Variables , 1969 .

[35]  P. Duval Creep and Fabrics of Polycrystalline Ice Under Shear and Compression , 1981, Journal of Glaciology.

[36]  Dusan Krajcinovic,et al.  Statistical aspects of the continuous damage theory , 1982 .

[37]  D. Karr A damage mechanics model for uniaxial deformation of ice , 1985 .

[38]  M. Ashby,et al.  The creep of polycrystalline ice , 1985 .

[39]  Jacky Mazars,et al.  Application of Continuous Damage Mechanics to Strain and Fracture Behavior of Concrete , 1985 .

[40]  Lee Davison,et al.  Thermomechanical constitution of spalling elastic bodies , 1973 .

[41]  D. R. Hayhurst,et al.  Creep rupture under tri-axial tension , 1986 .

[42]  J. Betten Representation of Constitutive Equations in Creep Mechanics of Isotropic and Anisotropic Materials , 1981 .

[43]  David R Hayhurst,et al.  Creep rupture under multi-axial states of stress , 1972 .

[44]  W. Goldsmith,et al.  Dynamic behavior of concrete , 1966 .

[45]  S. Murakami,et al.  Analysis of the coupled effect of plastic damage and creep damage in nimonic 80A at finite deformation , 1986 .

[46]  Jean-Louis Chaboche,et al.  Anisotropic creep damage in the framework of continuum damage mechanics , 1984 .

[47]  F. Sidoroff,et al.  Description of Anisotropic Damage Application to Elasticity , 1981 .

[48]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[49]  Dusan Krajcinovic,et al.  The Continuous Damage Theory of Brittle Materials, Part 2: Uniaxial and Plane Response Modes , 1981 .

[50]  J. Lemaître How to use damage mechanics , 1984 .

[51]  Surendra P. Shah,et al.  Rate-sensitive damage theory for brittle solids , 1984 .

[52]  David M. Cole,et al.  Acoustic emissions from polycrystalline ice , 1982 .

[53]  Sia Nemat-Nasser,et al.  Overall moduli of solids with microcracks: Load-induced anisotropy , 1983 .

[54]  David M. Cole,et al.  Cyclic loading and fatigue in ice , 1981 .

[55]  Zenon Mróz,et al.  A continuum model for plastic-brittle behaviour of rock and concrete , 1979 .

[56]  N. K. Sinha Short-Term Rheology of Polycrystalline Ice , 1978 .

[57]  E. Schulson,et al.  A Brittle to Ductile Transition in Ice under Tension , 1984 .

[58]  Dusan Krajcinovic,et al.  Constitutive Equations for Damaging Materials , 1983 .

[59]  D. Krajcinovic,et al.  Mechanics of Solids with Defective Microstructure , 1985 .

[60]  A. M. Fish,et al.  Thermodynamic model of creep at constant stress and constant strain rate , 1984 .

[61]  D. Krajcinovic Creep of Structures —A Continuous Damage Mechanics Approach , 1983 .

[62]  J W Dougill,et al.  SOME REMARKS ON PATH INDEPENDENCE IN THE SMALL IN PLASTICITY , 1975 .

[63]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[64]  J. Richter-Menge,et al.  Confined Compressive Strength of Horizontal First-Year Sea Ice Samples , 1991 .

[65]  K. E. Løland Continuous damage model for load-response estimation of concrete , 1980 .

[66]  N. K. Sinha Intercrystalline cracking, grain-boundary sliding, and delayed elasticity at high temperatures , 1984 .

[67]  S. Sjölind A constitutive model for ice as a damaging visco-elastic material , 1987 .

[68]  R. O. Ramseier,et al.  Classification of river and lake ice , 1971 .

[69]  N. K. Sinha Rheology of columnar-grained ice , 1978 .

[70]  E. Onat Representation of mechanical behavior in the presence of internal damage , 1986 .

[71]  F. A. Leckie,et al.  The micro- and macromechanics of creep rupture , 1986 .

[72]  E. Schulson,et al.  An analysis of the brittle to ductile transition in polycrystalline ice under tension , 1979 .

[73]  T. H. Jacka The time and strain required for development of minimum strain rates in ice , 1984 .

[74]  L. S. Costin,et al.  Detecting Damage Surfaces in Brittle Materials Using Acoustic Emissions , 1986 .

[75]  R. Bell,et al.  Grain-Boundary Sliding , 1962, Nature.

[76]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[77]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[78]  L. W. Gold PROCESS OF FAILURE IN ICE , 1970 .

[79]  F. Sidoroff,et al.  Damage Induced Elastic Anisotropy , 1982 .

[80]  S. Murakami,et al.  Notion of Continuum Damage Mechanics and its Application to Anisotropic Creep Damage Theory , 1983 .

[81]  H. E. Read,et al.  The Dynamic Behavior of Concrete. , 1971 .

[82]  L. W. Gold THE CRACKING ACTIVITY IN ICE DURING CREEP , 1960 .

[83]  J. Murat,et al.  Some experimental observations on the Poisson's ratio of sea-ice , 1982 .

[84]  N. K. Sinha Dislocations in ice as revealed by etching , 1977 .

[85]  Wilfred D. Iwan,et al.  On a Class of Models for the Yielding Behavior of Continuous and Composite Systems , 1967 .

[86]  A. Dragon Dilatational Creep in Rock-Like Solids , 1981 .

[87]  W. Szyszkowski,et al.  A nonlinear constitutive model for ice , 1985 .

[88]  N. K. Sinha Delayed-elastic model for initiation and accumulation of creep cavitation at high temperatures , 1984 .

[89]  D. M. Cole,et al.  Grain Size and the Compressive Strength of Ice , 1985 .

[90]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[91]  Nobutada Ohno,et al.  A Constitutive Model of Creep Describing Creep Recovery and Material Softening Caused by Stress Reversals , 1985 .

[92]  Wei Hua Tai,et al.  A new microvoid-damage model for ductile fracture , 1986 .

[93]  F. Haynes TENSILE STRENGTH OF ICE UNDER TRIAXIAL STRESSES , 1973 .

[94]  J. Betten Applications of tensor functions to the formulation of constitutive equations involving damage and initial anisotropy , 1986 .

[95]  L. Morland,et al.  Viscoelastic solid relations for the deformation of ice , 1981 .

[96]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[97]  S. Bodner A Procedure for Including Damage in Constitutive Equations for Elastic-Viscoplastic Work-Hardening Materials , 1981 .

[98]  L. Davison,et al.  Continuum Measures of Spall Damage , 1972 .

[99]  A. Pipkin,et al.  The formulation of constitutive equations in continuum physics. I , 1959 .

[100]  Malcolm Mellor,et al.  Mechanical behavior of sea ice , 1986 .

[101]  Dusan Krajcinovic,et al.  CONTINUUM DAMAGE MECHANICS , 1984 .

[102]  W. Trąmpczyński,et al.  Creep rupture under non-proportional loading , 1980 .

[103]  David M. Cole,et al.  Stress/strain/time relations for ice under uniaxial compression , 1983 .

[104]  Jl Chaboche,et al.  Lifetime Predictions and Cumulative Damage under High-Temperature Conditions , 1982 .

[105]  Malcolm Mellor,et al.  Mechanical properties of polycrystalline ice: An assessment of current knowledge and priorities for research , 1980 .

[106]  David R Hayhurst,et al.  Constitutive equations for creep rupture , 1977 .

[107]  Malcolm Mellor,et al.  Deformation and Fracture of Ice Under Uniaxial Stress , 1972, Journal of Glaciology.

[108]  F. Leckie,et al.  The effect of creep constitutive and damage relationships upon the rupture time of a solid circular torsion bar , 1973 .

[109]  A. Assur,et al.  FRACTURE OF LAKE AND SEA ICE , 1969 .

[110]  Ramesh Talreja,et al.  A continuum mechanics characterization of damage in composite materials , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[111]  Bernard Michel,et al.  Yield and failure envelope for ice under multiaxial compressive stresses , 1986 .

[112]  Jean Lemaitre,et al.  Local approach of fracture , 1986 .

[113]  D. R. Hayhurst,et al.  Creep rupture of structures , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[114]  A. Nádai Theory of flow and fracture of solids , 1950 .

[115]  C. L. Chow,et al.  An anisotropic theory of continuum damage mechanics for ductile fracture , 1987 .

[116]  Sumio Murakami,et al.  Modelling of the coupled effect of plastic damage and creep damage in Nimonic 80a , 1986 .

[117]  J. Currier,et al.  A Study on the Tensile Strength of Ice as a Function of Grain Size , 1982 .

[118]  J. Heverly Supercooling and crystallization , 1949 .

[119]  F. A. Leckie,et al.  The constitutive equations of continuum creep damage mechanics , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.