Automatic Layout of UML Class Diagrams in Orthogonal Style
暂无分享,去创建一个
Michael Jünger | Michael Kaufmann | Karsten Klein | Petra Mutzel | Carsten Gutwenger | Markus Eiglsperger | Martin Siebenhaller | Sebastian Leipert | Joachim Kupke | M. Jünger | Petra Mutzel | M. Kaufmann | K. Klein | Markus Eiglsperger | S. Leipert | Martin Siebenhaller | Carsten Gutwenger | Joachim Kupke
[1] Petra Mutzel,et al. Optimal Labelling of Point Features in the Slider Model , 2000, COCOON.
[2] David A. Carrington,et al. User Preference of Graph Layout Aesthetics: A UML Study , 2000, GD.
[3] Petra Mutzel,et al. Computing Optimal Embeddings for Planar Graphs , 2000, COCOON.
[4] Carlo Mannino,et al. Optimal Upward Planarity Testing of Single-Source Digraphs , 1993, ESA.
[5] Petra Mutzel,et al. Combining Graph Labeling and Compaction , 1999, GD.
[6] Mitsuhiko Toda,et al. Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.
[7] Holger Eichelberger,et al. Aesthetics of class diagrams , 2002, Proceedings First International Workshop on Visualizing Software for Understanding and Analysis.
[8] Petra Mutzel,et al. An Experimental Study of Crossing Minimization Heuristics , 2003, Graph Drawing.
[9] Michael Jünger,et al. A note on computing a maximal planar subgraph using PQ-trees , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[10] Jochen Seemann,et al. Extending the Sugiyama Algorithm for Drawing UML Class Diagrams: Towards Automatic Layout of Object-Oriented Software Diagrams , 1997, GD.
[11] Michael Jünger,et al. Journal of Graph Algorithms and Applications 2-layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms , 2022 .
[12] Carlo Batini,et al. Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..
[13] Emden R. Gansner,et al. A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..
[14] Maurizio Patrignani,et al. On the complexity of orthogonal compaction , 1999, Comput. Geom..
[15] Alexander Wolff,et al. A Combinatorial Framework for Map Labeling , 1998, Graph Drawing.
[16] Michael Kaufmann,et al. Orthogonal graph drawing with constraints , 2000, SODA '00.
[17] Helen C. Purchase,et al. Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.
[18] Michael Jünger,et al. A new approach for visualizing UML class diagrams , 2003, SoftVis '03.
[19] Roberto Tamassia,et al. On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..
[20] Michael Jünger,et al. Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.
[21] Karsten Klein,et al. An Experimental Comparison of Orthogonal Compaction Algorithms (Extended Abstract) , 2000, GD.
[22] Petra Mutzel,et al. Quasi-orthogonal drawing of planar graphs , 1998 .
[23] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[24] Robert E. Tarjan,et al. An O(m log n)-Time Algorithm for the Maximal Planar Subgraph Problem , 1992, SIAM J. Comput..
[25] Michael Kaufmann,et al. Drawing High Degree Graphs with Low Bend Numbers , 1995, GD.
[26] Walter Didimo,et al. Computing Labeled Orthogonal Drawings , 2002, Graph Drawing.
[27] Walter Didimo,et al. Computing Orthogonal Drawings with the Minimum Number of Bends , 1997, IEEE Trans. Computers.
[28] Chris F. Kemerer,et al. A Metrics Suite for Object Oriented Design , 2015, IEEE Trans. Software Eng..
[29] Michael Kaufmann,et al. yFiles - Visualization and Automatic Layout of Graphs , 2001, Graph Drawing Software.
[30] Ivar Jacobson,et al. The Unified Modeling Language User Guide , 1998, J. Database Manag..
[31] Walter Didimo,et al. Labeling Heuristics for Orthogonal Drawings , 2001, Graph Drawing.
[32] Michael Kaufmann,et al. A topology-shape-metrics approach for the automatic layout of UML class diagrams , 2003, SoftVis '03.
[33] Michael Kaufmann,et al. Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Size , 2001, GD.
[34] Karlis Freivalds,et al. Disconnected Graph Layout and the Polyomino Packing Approach , 2001, GD.
[35] Michael Jünger,et al. Advances in C-Planarity Testing of Clustered Graphs , 2002, Graph Drawing.
[36] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[37] Iseult White,et al. Booch method of object-oriented analysis and design , 1994 .
[38] Robert F. Cohen,et al. Planarity for Clustered Graphs , 1995, ESA.
[39] Norishige Chiba,et al. A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..
[40] Walter Didimo,et al. Orthogonal and Quasi-upward Drawings with Vertices of Prescribed Size , 1999, GD.
[41] Walter Didimo,et al. Planarization of Clustered Graphs , 2001, Graph Drawing.
[42] Robert F. Cohen,et al. An experimental study of the basis for graph drawing algorithms , 1997, JEAL.
[43] Kurt Mehlhorn,et al. On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm , 2005, Algorithmica.
[44] Ulrik Brandes,et al. Sketch-Driven Orthogonal Graph Drawing , 2002, GD.
[45] Roberto Tamassia,et al. On the Compuational Complexity of Upward and Rectilinear Planarity Testing , 1994, Graph Drawing.
[46] Frank Harary,et al. Graph Theory , 2016 .
[47] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.
[48] Walter Didimo,et al. Quasi-Upward Planarity , 1998, Algorithmica.