The detector control systems for the CMS Resistive Plate Chamber

The Resistive Plate Chamber system is composed by 912 double-gap chambers equipped with about 104 front-end boards. The correct and safe operation of the RPC system requires a sophisticated and complex online Detector Control System, able to monitor and control 2·104 hardware devices distributed on an area of about 5000 m2. The RPC DCS acquires, monitors and stores about 105 parameters coming from the detector, the electronics, the power system, the gas, and cooling systems. The DCS system and the first results, obtained during the 2007 and 2008 CMS cosmic runs, will be described in this note.

[1]  Grzegorz Wrochna,et al.  Radiation tests of CMS RPC muon trigger electronic components , 2005 .

[2]  Chris P. Barnes,et al.  The LHCb detector at the LHC , 2008 .

[3]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[4]  Z. L. Matthews,et al.  The ALICE experiment at the CERN LHC , 2008 .

[5]  F. Loddo,et al.  Results about HF production and bakelite analysis for the CMS Resistive Plate Chambers , 2008 .

[6]  Grzegorz Wrochna,et al.  Pattern comparator trigger algorithm: implementation in FPGA , 2003, Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (WILGA).

[7]  Luciano Orsini,et al.  Software Architecture for Processing Clusters Based on I2O , 2004, Cluster Computing.

[8]  R. Barillère,et al.  LHC GCS: A HOMOGENEOUS APPROACH FOR THE CONTROL OF THE LHC EXPERIMENTS GAS SYSTEMS , 2003 .

[9]  C. Gaspar,et al.  SMI++ object-oriented framework for designing and implementing distributed control systems , 2004, IEEE Transactions on Nuclear Science.

[10]  G. Aielli,et al.  RPC operation at high temperature , 2003 .

[11]  Paolo Vitulo,et al.  Performance of resistive plate chambers for the muon detection at CMS , 1999 .

[12]  M. Gonzalez-Berges,et al.  The Joint COntrols Project Framework , 2003, physics/0305128.

[13]  João Paulo Teixeira,et al.  The CMS experiment at the CERN LHC , 2008 .

[14]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[15]  D. Gigi,et al.  Using XDAQ in application scenarios of the CMS experiment , 2003 .

[16]  Alexander Oh,et al.  CMS DCS DESIGN CONCEPTS , 2005 .

[17]  Delphi collaboration,et al.  Search for the Standard Model Higgs Boson at LEP , 2001, hep-ex/0107029.

[18]  Veikko Karimäki,et al.  The CMS tracker system project : Technical Design Report , 1997 .

[19]  G. Aad,et al.  The ATLAS Experiment at the CERN Large Hadron Collide , 2008 .

[20]  B. G. Taylor,et al.  Timing Distribution at the LHC , 2002 .

[21]  Dominique Gigi,et al.  The run control system of the CMS experiment , 2008 .

[22]  H. Stoeck,et al.  CMS physics technical design report: Addendum on high density QCD with heavy ions , 2007 .

[23]  F. Loddo,et al.  The CMS RPC gas gain monitoring system: An overview and preliminary results , 2008, 0812.1108.

[24]  F. Loddo,et al.  The gas monitoring system for the Resistive Plate Chamber detector of the CMS experiment at LHC , 2008 .

[25]  G. Bruno,et al.  New developments on front-end electronics for the CMS Resistive Plate Chambers , 2000 .

[26]  J. Varela,et al.  Conceptual design of the CMS trigger supervisor , 2006, IEEE Transactions on Nuclear Science.

[27]  Precision electroweak tests of the standard model , 2004, hep-ph/0404165.

[28]  M.Beharrell,et al.  Technology Integration in the LHC EXperiments Joint Controls Project , 2001 .

[29]  Krzysztof T. Pozniak,et al.  First measurements of the performance of the Barrel RPC system in CMS , 2009 .

[30]  P. Paolucci,et al.  The detector control systems for the CMS Resistive Plate Chamber , 2010 .